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Abstract. The main objective of the analysis is to review and discuss the principles of the similarity method applied to 
the boundary layer on inclined surfaces, in laminar regime, and that can be extended to a turbulent regime. The 
emphasis applies to theoretical aspects related to the concept of similarity, but theoretical results were obtained in order 
to compare with empirical expressions and experimental results. Results are obtained for the hydrodynamic and thermal 
fields, such as coefficient of friction and Stanton number, as a function of the pressure gradient parameter and the 
Prandtl number. The fourth order Runge-Kutta method is applied, starting from the expansion in power series as the first 
approximation for the mathematical solution of hydrodynamic and thermal problems, in laminar regime. The Integral 
Method is applied to obtain an approximate solution for the flow in turbulent regime, by similarity variables method. 
Numerical and graphical results are presented in sufficient numbers to emphasize the consistency of the model 
developed in the determination of parameters related to thermal and hydrodynamic boundary layers on smooth and 
rough surfaces. 
 
Keywords: Similarity method, fourth order Runge Kutta Method, hydrodynamic boundary layer; thermal boundary layer. 
 
 
INTRODUCTION 
 
At the beginning of the twentieth century, important 
developments occurred in the hydrodynamic theory of the 
flows in the bodies, which provided explanations for the 
observed discrepancies between the theory of hydraulic 
and equations of Euler for an ideal fluid. Navier-Stokes 
equations were already available, but the degree of 
difficulty imposed for complete solution of the equations, 
even for simple problems, and low viscosity fluids such 
as air and water, has not provided a satisfactory solution 
to the needs of the moment. In 1904 Prandtl developed 
the concept of boundary layer, demonstrated that the flow 
around a body is divided into two regions: a thin layer 
close to the body, where the viscous tensions are 

preponderant, and an outer region where viscous forces 
can be neglected. Through this "artifice", simpler 
equations, derived from the Navier-Stokes equations 
could be deduced and resolved with relative ease for flat 
plate flow Blasius (1908), Hager (2003) and sloping 
surfaces Falkner and Skan (1930, 1931) in laminar 
regime. 

The boundary-layer equations made it possible to 
rapidly advance the theory of fluid mechanics and its 
application to airfoils; which is an important application for 
aircraft design. The boundary layer theory has also 
brought advances in the solution of problems associated 
with the heat transfer around bodies. The classical  
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mathematical method chosen to solve this class of 
problems is called the "Similarity Method". 

The similarity method makes it possible to transform a 
nonlinear third order partial differential equation into an 
ordinary differential equation. It is now considered that 
the main aspects of the similarity theory have already 
been clarified. Extensions of the theory were applied to 
the turbulent regime, and the boundary layer concept 
associated with the similarity method continues to be 
used as a basis for more complex problems than those 
analyzed by Blasius and Falkner and Scan. These are 
extensively published in traditional textbooks. However, 
due to the complexity of the turbulent flows, a complete 
theory, based on the principle of similarity, still does not 
exist and research continues to be carried out in this area 
(Abbasi et al., 2014; Bhattacharyya et al., 2016; Bognar 
and Hriczó, 2011; Castilho, 1997; Myers, 2010; Rahman, 
2011; Stemmer, 2010).  

Analytical methods of solution of partial nonlinear 
differential equations, based on stream function and 
similarity method are being applied to solve numerous 
engineering problems. 

Buoyancy-driven, incompressible, two-dimensional flow 
of a micropolar fluid inside an inclined porous cavity in 
the presence of magnetic field is investigated by Nazeer 
et al. (2017). The nonlinear partial differential equations 
are solved by employing a robust Galerkin finite element 
scheme. The code is validated and benchmarked with the 
previous numerical data available in the literature. 

Sheikhzadeh and Abbaszadeh (2018) determined the 
solutions for the momentum and energy equations of 
laminar flow of a non-Newtonian fluid in an axisymmetric 
porous channel using the least squares and Galerkin 
methods. The numerical solution is conducted using 
fourth order Runge-Kutta method. With comparing the 
results obtained from the analytical and numerical 
methods, a good adaptation can be seen between them. 
It can also be observed that the results of the Galerkin 
method have further conformity with the numerical results 
and the Galerkin method is simpler than the least square 
method and requires fewer computations.  

Ali et al. (2019) performed a numerical study for the 
mixed convection flow inside a triangular cavity. The 
rheological behavior of the fluid inside the cavity is 
modeled through the constitutive bi-viscosity equation. 
The governing nonlinear partial differential equations are 
discretized using Galerkin finite element method and 
pressure is eliminated through the penalty method. The 
computations are presented graphically for a wide range 
of the bi-viscosity parameter, thermal radiation 
parameter, Hartman number, Grashof number, Reynolds 
number, heat generation/absorption parameter and 
Prandtl number. 

Rabari et al. (2017) present an analytical study on the 
blood flow containing nanoparticles through porous blood 
vessels, in the presence of magnetic field, using the 
Homotopy Perturbation Method (HPM). The viscosity of  

 
 
 
 
nanoparticles is determined by Constant, Reynolds' and 
Vogel's models. It is observed that velocity reduces at 
higher values of magnetic field intensity. 

The problem of the steady, incompressible, three-
dimensional stagnation point flow of a micropolar fluid 
over an off centered infinite rotating disk in a porous 
medium is studied Khan et al. (2017). Injection/suction is 
applied uniformly throughout the surface of porous disk. 
The Darcy's resistance for the micropolar fluid is also 
formulated. The partial differential equations are 
converted into the set of ordinary differential equation by 
utilizing the suitable transformation. The system of 
equations is analytically solved by the means of a non-
perturbative technique, homotopy analysis method 
(HAM). The influence of rotational parameter, material 
parameter, spin gradient viscosity parameter, micro-
inertia density parameter, porosity parameter and 
suction/injection parameter on velocity functions is 
presented in graphical form and discussed in detail. 
Verification of the solutions is made by a numerical 
comparison with the previous study. 

Aziz et al. (2018) analyzes the heat transfer of a thin 
film flow on an unsteady stretching sheet in nanofluids. 
Three different types of nanoparticles are considered; 
copper Cu, alumina Al2O3 and titania TiO2 with water as 
the base fluid. The governing equations are simplified 
using similarity transformations. The resulting coupled 
nonlinear differential equations are solved by the 
Homotopy Analysis Method (HAM). The analytical series 
solutions are presented and the numerical results 
obtained are tabulated. In particular, it shows that the 
heat transfer rate decreases when nanoparticles volume 
fraction increases.  

Combined influences of thermal radiation, inclined 
magnetic field and temperature-dependent internal heat 
generation on unsteady two-dimensional flow and heat 
transfer analysis of dissipative Casson-Carreau nanofluid 
over a stretching sheet embedded in a porous medium is 
investigated by Sobamowo et al. (2018). Similarity 
transformations are used to reduce the developed 
systems of governing partial differential equations to 
nonlinear third and second orders ordinary differential 
equations which are solved using finite element method. 
In the study, kerosene is used as the base fluid which is 
embedded with the silver (Ag) and copper (Cu) 
nanoparticles. Also, effects of other pertinent parameters 
on the flow and heat transfer characteristics of the 
Casson-Carreau nanofluids are investigated and 
discussed. 

In this work, the aspects related to laminar regime are 
associated, mainly, with the works of Evans (1968) and 
the aspects associated to the turbulent regime, smooth 
and rough surface, are related to the works of Kays et al. 
(1969). 

The results obtained enable simplifications to be used 
in numerous practical situations, such as modeling for 
determination of micro meteorological parameters, as  



 
 
 
 
recommended in Monin-Obukov's theory of similarity Stull 
(1988). 
 
 
Objectives 
 
The main objective is to review and discuss the principles 
of the method of similarity applied to boundary layer on 
sloped, smooth and rough surfaces, laminar and 
turbulent regimes. Emphasis applies to theoretical 
aspects related to the concept of similarity and integral 
method, but results were obtained with the aim of 
comparing with empirical expressions and experimental 
results.  

A secondary objective is to present the main aspects of 
the problem analyzed by Falkner and Skan, focusing on 
the similarity method, which can be extended, as already 
stated, to more complex problems of flow and heat 
transfer in turbulent regime.  

For comparison purposes, the problem of flux flow and 
heat transfer in turbulent regime in boundary layer on 
inclined surfaces, using velocity profile with an exponent 
one-seven (1/7), is applied as an extension of the 
solution with zero gradient of pressure, presented by 
Kays and Crawford (1983) and Nogueira and Soares 
(2018). 
 
 
METHODOLOGY 
 
The aspects related to laminar regime are based on the 
deep study carried out by Evans (1968), and in turbulent 
regime the text of Kays and Crawford (1966). 

It is assumed that there is no mass transfer through the 
surface (without surface perspiration effect) and that the 
perpendicular component of velocity is zero. In addition, 
the velocity component parallel to the surface is also 
zero, a condition called "no slip on the wall" in the 
specialized literature. All the presented solutions and 
results assume constant properties, unaffected by the 
variation of temperature, and the velocities are sufficiently 
low so that the viscous dissipation term can be neglected.  

The basic equations for boundary layer similarity 
conditions are widely discussed Schlichting (1968); 
Evans (1968), Kays and Crawford (1983), Silva Freire 
(1990), and only essential details for the understanding of 
the arguments are presented in this work. Details on flat 
plate flow are discussed by Nogueira and Soares (2018). 

There are in the literature many ways of specifying the 
existence of similar solutions for the laminar boundary 
layer equations. The main characteristic associated with 
the concept of boundary layer similarity is that the 
undisturbed velocity distribution of the potential flow must 
satisfy the following expression, which follows the original 
suggestion of Falkner and Scan (1931): 
 
𝑈(𝑥) = 𝐶𝑥𝑚                                                                                    (1) 
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where C is the value of U (x) where x is unitary, and the 
value of m depends on the pressure gradient in the main 
direction of the flow. However, according to Spalding and 
Pun (1962), it is convenient to impose that U (x) satisfies 
the following equation: 
 
𝑑𝑈

𝑑𝑥
= 𝐶𝑈

2(𝛽−1)

𝛽                                                                             (2) 

 

where β is a parameter that is associated with the 
pressure gradient in the direction of the main flow.  

The potential theory, applied around an angle wedge 
βπ/2 Evans (1988), satisfies Equation 1, above, where: 
 

𝑚 =
𝛽

(2 − 𝛽)
                                                                              (3) 

 

and, 
 
1

𝛽

𝑑𝑈

𝑑𝑥
=

𝑈

𝑥

1

(2 − 𝛽)
                                                                     (4) 

 

 However: 
 
𝑑𝑝

𝑑𝑥
= −𝜌𝑈

𝑑𝑈

𝑑𝑥
                                                                             (5) 

 
The specification of U (x) is equivalent to specifying the 
pressure gradient, which is a function of β: 
 
𝑑𝑝

𝑑𝑥
= −𝜌𝑈

𝛽

(2 − 𝛽)

𝑈

𝑥
                                                                  (6) 

 
The parameter β, as can be seen, depends only on the 
velocity distribution in the external region to the boundary 
layer, the variable x along the surface and the pressure 
gradient. 

We are interested in the flow conditions where -0.2 ≤ β 
≤ 1.0, representing the limits of the boundary conditions 
for the pressure gradient parameter between the 
boundary layer detachment β=-0.2, and the two-
dimensional stagnation flow β=1.0, in the laminar regime 
(Figure 1). 

The differential equation governing the velocity 
distribution at a similar boundary layer for laminar regime 
within the range of the already established pressure 
gradient parameter β is given by Schlichting (1968); 
Evans (1968), Kays and Crawford (1983), Silva Freire 
(1990): 

 

𝑓′′′ + 𝑓. 𝑓′′ + 𝛽. (1 − 𝑓′2
) = 0                                               (7) 

 
with the following boundary conditions: 
 
𝜂 = 0,            𝑓 = 𝑓′ = 0                                  7.1 
𝜂 → ∞,          𝑓′ → 1.0                                         7.2 
 
where f and η are defined by: 
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Figure 1. Flow on an inclined surface of angle πβ. 

 
 

𝜂 =
𝑦

𝑥

(
𝑈𝑥

𝜐
)1/2

√2 − 𝛽
   𝑒   𝑓 =

𝜓/𝜐

(
𝑈𝑥

𝜐
)√2 − 𝛽

                                       (8) 

 

where x and y are, respectively, the primitive coordinates 
along the surface and perpendicular to it. 

Choosing the coordinate η as a function of y / x, which 
is very small, except at x = 0, by the square root of the 

Reynolds number, 𝑅𝑒𝑥 = (
𝑈𝑥

𝜈
)1/2, which is very large, we 

impose 𝑦/𝑥 is small, but η is not.  
From the definitions of η and f, we have expressions for 

the components of dimensionless velocities: 
 

𝑢 = 𝑈
𝑑𝑓

𝑑𝜂
        𝑒         𝑣

= − (
𝜐

𝛽

𝑑𝑈

𝑑𝑥
)

1

2

[𝑓 + (𝛽 − 1)𝜂
𝑑𝑓

𝑑𝜂
                  (9) 

 

The last boundary condition, Equation 7.2, means that 
as η grows 𝑓′ = 𝑢/𝑈 should approach the unit without 
exceeding it. The value of η, in this case, is called 𝜂∞, for 
a given value of β.  

Due to the difficulty in solving the above boundary 
condition problem with reasonable precision, we apply 
the 4th order Runge Kutta Method (Tannehill et al., 
1997), with initial value of f''(0) given after application of 
the Power Series Method.  

The approximate solution by the power series method 
with the Shooting Method (Tannehill et al., 1997; Oderin, 
2014), as an approximation procedure for the velocity 
profile is obtained by assuming that the function f (η) 
satisfies the following expansion in series: 
 

𝑓(𝜂) = 𝐶2

𝜂2

2!
+ 𝐶5

𝜂5

5!
+ 𝐶6

𝜂6

6!
… + 𝐶𝑛

𝜂𝑛

𝑛!
                              (10) 

 
With the following recurrence rule: 
 

𝐶𝑛+3

= −𝑛! [
1

1! (𝑛 − 1!)
 (𝛽. 𝐶2. 𝐶𝑛)

+  
1

2! (𝑛 − 2!)
(𝐶2. 𝐶𝑛 +  𝛽. 𝐶3. 𝐶𝑛−1) +  

1

3! (𝑛 − 3!)
(𝐶3. 𝐶𝑛−1)

+
1

4! (𝑛 − 4!)
(𝐶5. 𝐶𝑛−3) ]                                                        (11) 

 

for n≥4. 
 

𝐶3 = −𝛽 ;  𝐶5 = −2 (𝛽 +
1

2
) 𝐶2

2   𝑒   𝐶6

= 6𝛽 (𝛽 +
1

2
) 𝐶2                                        (12) 

 
The term C2 corresponds to f "(0), that is: 
 

𝐶2

= 𝑓′′(0)                                                                                        (13) 
 
Through Shooting Method (Tannehill et al., 1997; 
Oderinu, 2014), or other approach method, as the 
"Bisection Method", we can obtain the value of C2, with 
the desired approximation. However, the approximation 
method through the series solution is slow, in order to 
obtain the necessary solution for our purposes. In this 
sense, we apply the fourth Runge-Kutta method 
(Tannehill et al., 1997), with initial value for f '' (0) from 
the expansion in power series. As the Runge-Kutta 
method is a high-precision numerical method, coupled 
with the Newton-Raphson method, the final solution for 
the velocity field in the hydrodynamic boundary layer is 
obtained in less time than necessary for the series  



 
 
 
 
solution, with the same precision.  

The energy equation for determining the dimensionless 
temperature field is given by: 
 
𝑑

𝑑𝜂
(𝜃′) + 𝑃𝑟. 𝑓. 𝜃′ = 0                                                              (14) 

 

The temperature profile shall satisfy the following contour 
conditions for the specified surface temperature: 
 

𝜂 = 0,            𝜃 = 0                                                       14.1 

𝜂 → ∞,          𝜃 → 1.0                                                    14.2 
 

where Pr is the number of Prandtl, and  
 

𝜃 =
𝑇 − 𝑇𝑊

𝑇∞ − 𝑇𝑊

                                                                            (15) 

 

It is assumed that 𝑇∞, temperature outside the boundary 
layer, is not affected by the heat rate removed outside of 
the boundary layer. The value of 𝑇𝑊 corresponds to the 
surface temperature (reference!). 

The energy equation, Equation 14, is linear and less 
complex than the velocity field equation. However, it 
strongly depends on the solution of the velocity profile, 
since f appears explicitly in the second term. Therefore, 
the greater the precision in the solution of f, the better the 
solution in θ.  

The Runge-Kutta method is used for solution of the 
temperature field, but it is observed that the limit value for 
η, 𝜂 → ∞, is not necessarily the same as that obtained for 
the velocity field, for a given β. As an alternative, in terms 
of comparison, a second solution is obtained by directly 
integrating the energy equation Kays and Crawford 
(1983); Evans (1968): 
 

𝜃 = 𝜃0
′ . ∫ exp [−𝑃𝑟. ∫ 𝑓. 𝑑𝜂]

𝜂

0

𝜂

0

𝑑𝜂                                          (16) 

 

𝜃′ = 𝜃0
′ . exp [−𝑃𝑟. ∫ 𝑓. 𝑑𝜂]

𝜂

0

                                                     (17) 

 
where 𝜃0

′  'is the value of the surface temperature 
derivative: 
 
𝜃 → 1,      𝜂 → ∞            𝜃0

′

=
1

∫ exp [−𝑃𝑟. ∫ 𝑓. 𝑑𝜂]
𝜂

0

∞

0
𝑑𝜂

                                                     (18) 

 
However, the application of Equation 18, above, does not 
provide adequate accuracy to obtain the surface 
temperature gradient. In this sense, we chose to use 
Evans's procedure, in 𝜃0

′ . 
Therefore, 

 

(
𝑑𝜃

𝑑𝜂
)0 =

3

𝐸
(
𝑃𝑟. 𝑓0

′′

3!
)1/3                                                               (19) 
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Where 
 

𝐸 = Γ (
1

3
) + ∑

𝑎𝑞

𝑃𝑟
𝑞

3

∞

𝑞=0

                                                                   (20) 

 

Γ is the gamma function: 
 

Γ (
1

3
) = 2.6789385                                                                    (21) 

 
Expressions for 𝑎𝑞 contains the pressure gradient 

parameter β, the dimensionless viscous stress on the 
wall 𝑓′′(0) , and numerical factors derived from the 
combination of gamma functions and are not presented. 
The complete procedure for the exact determination is 
found in Evans (1968). In addition, Equation 19, for 
determining the temperature gradient at the surface, 
presents unsatisfactory results as β tends to the flow 
separation value (β = -0.2). Evans (1968) describes an 
alternative procedure for this case, but it will not be the 
subject of discussion in this analysis.  

In turbulent regime there are no analytical solutions for 
the boundary layer equations. An alternative for the 
determination of turbulent boundary layer parameters is 
the approximate solution of Von Kármán's equation: 
 
𝑑𝛿2

𝑑𝑥
=

𝐶𝑓

2
=

𝜏𝑤

𝜌𝑈2
                                                                        (22) 

 

Even in the zero-pressure gradient, flat plate flow, Von 
Kármán's equation has more unknowns than equations. 
Thus, it is necessary to relate the unknowns by specifying 
a dimensionless velocity profile. 

For comparison purposes, in relation to the laminar 
regime, in this work, values for turbulent flow are 
determined on smooth and rough inclined surfaces, by 
means of an approximate theoretical model. Turbulent 
flow with 1/7 power is used, and experimental results of 
Schultz-Grunow (1941), Pimenta et al. (1975), Schlicthing 
and Prandtl (1968), and Kays and Crawford (1983).  

The theoretical procedure, in this case, corresponds to 
the one recommended by Kays and Crawford (1983), for 
flat plate flow, where the conditions of similarity are 
satisfied. In fact, the valid procedure is used for flat plate, 
for determination of the profiles of speed and 
temperature, and generalizes to situations where 𝛽 ≠ 0, 
through the concept of the shape factor, 𝐻12, and 
correction formulas obtained by Kays and Crawford 
(1983).  

For the approximate determination of the turbulent 
velocity profile, associated with the integral equation of 
momentum, a power law of type 1/7 is very convenient: 
 

𝑢+ = 8.75𝑦+1/7
                                                                            (23) 

 
The above expression represents the speed profile up to 
𝑦+ = 1500 a little better than the equation, much used in  
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algebraic simulations, called "Logarithmic Law in the 
Wall". 
 

𝑢+ =
𝑢

√𝜏𝑤
𝜌⁄

         𝑒        𝑦+ = 𝑦
√𝜏𝑤

𝜌⁄

𝜐
                                  (24) 

 

If Equations 22 and 23 are valid throughout the boundary 
layer, and that the thickness δ corresponds to the 
position where the velocity is equal to U, we have: 
 

𝑈

√𝜏𝑤
𝜌⁄

= 8.75𝛿
√𝜏𝑤

𝜌⁄

𝜐
                                                                           (25) 

 

The displacement, 𝛿1, and momentum thickness, 𝛿2, can 
be evaluated by the following expressions: 
 

𝛿1 = ∫ (1 −
𝑢𝜌

𝑈𝜌∞

) 𝑑𝑦                                                             (26)
∞

0

 

 

and 
 

𝛿2 = ∫
𝜌𝑢

𝜌∞𝑈
(1 −

𝑢

𝑈
) 𝑑𝑦                                                         (27)

∞

0

 

 

The integral equation of the momentum, in similar 
coordinates, is given by: 
 

𝑓′′(0) =
1

𝛿4

=
1

𝜐𝑈

𝑑

𝑥
(𝑈2𝛿2)

+
𝛿1

𝜐

𝑑𝑈

𝑑𝑥
                                                          (28) 

 

or  
 

𝛿2

𝛿4

=
1

2

𝑈(𝑥)

𝜐

𝑑𝛿2
2

𝑑𝑥
+ (2

+ 𝐻12)
𝛿2

2

𝜐

𝑑𝑈(𝑥)

𝑑𝑥
                                        (29) 

 

where  
 

𝐻12

=
𝛿1

𝛿2

 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟                                         (30) 

 
For similar boundary layer, each 𝛿𝑛 is a constant and 
therefore the shape factor is a constant. It is important to 
note that Equation 28 is valid for laminar and turbulent  
regime. The shape factor increases in an adverse 
pressure field, β <0. For flow in turbulent boundary layer,  

 
 
 
 
H increases from 1.29 to null pressure gradient β = 0, to 
approximately 2.7 in the separation condition 𝛽 ≅ 0.2 
Simpson (1989). For accelerated flow the value of H 
increases again, as a function of the "tendency to laminar 
flow" effect, and tends to 1.47 for two-dimensional 
stagnation flow, β = 1 Smith (1966). The velocity 
distribution, U (x), must be known prior to the application 
of the integral momentum equation, Equation 28. 

The displacement thickness, 𝛿1, has the effect of 
displacing the undisturbed main flow current function with 
respect to the value it should have for ideal, non-viscous 
fluid. The momentum thickness, 𝛿2, is the extent to which 
the amount of fluid movement in the boundary layer is 
below what should be for an ideal fluid. The viscous 
thickness, 𝛿4, inverse of f "(0), is the measure of the 
resistance offered for transferring the amount of 
movement of the main stream to the surface. 

There are two predominant regions to be analyzed in a 
turbulent boundary layer: 
 
1. A predominantly viscous region close to the surface, 
where viscous stresses and molecular conduction prevail; 
2. A completely turbulent region where the amount of 
movement and heat are transported in rates generally 
much higher than that of the viscous sublayer. 
 

It is in the viscous sublayer, however, where events 
associated with turbulence occur and are of greater 
importance than the fully turbulent region. The viscous 
forces, largely responsible for the characteristics of the 
laminar flow, have the effect of restoring the laminar flow 
in turbulent flow and, otherwise, the inertial forces 
associated with the local variations of the velocity field 
have the opposite effect. In fact, inertial forces tend to 
amplify local disturbances. It is to be expected, therefore, 
that the stability of the laminar flow is associated with low 
numbers of Reynolds, ratio between the forces of inertia 
by the viscous forces. Although instability is an essential 
feature in the viscous sublayer, the turbulent boundary 
layer structure adjusts itself, constructing a relatively 
stable structure with stability characteristics (there is 
regularity!).  

At turbulent flow, along the surface, the laminar 
sublayer becomes narrow and becomes an increasingly 
smaller fraction of the entire boundary layer. In essence, 
the turbulent boundary layer has the property of diffusing 
the amount of movement, and other properties of the 
flow, much more rapidly than the simple molecular 
process. 

Equations 26 and 27, together with the integral 
equation of momentum, Equation 28, can be used to 
obtain the coefficient of friction in the turbulent boundary 
layer. Note, however, that the velocity profile is valid for 
null pressure gradients, that is, β = 0. For situations in 
which the pressure gradient is different from zero, 
correction must be made. The expression for the 
coefficient of friction, β = 0, is given by Kays and 
Crawford (1983): 



 
 
 
 
𝐶𝑓

2
=

0.0594

2𝑅𝑒𝑥
1/5

                                                                            (31) 

 
which can be compared with the experimental equation 
obtained by Schultz-Grunow (1941): 
 
𝐶𝑓

2
= 0.185(𝐿𝑜𝑔10(𝑅𝑒𝑥))

−2.584
                                            (32) 

 

In turbulent boundary layer analysis, it is convenient to 
define some type of similarity. However, the task is not as 
simple as in laminar boundary layer. In turbulent flow, in a 
region very close to the surface, it is observed that u+= y+ 
e, logically, the principle of similarity applies. Outside this 
region and in the explicit coordinate system, the principle 
generally does not apply. However, there are some 
classes of turbulent flow that have similarity, even outside 
the laminar sublayer.  

Turbulent boundary layer that has similarity outside the 
laminar sublayer is called the boundary layer in 
equilibrium. The equilibrium boundary layer is the one 
that satisfies the following velocity profile: 
 
𝑢 − 𝑈

√
𝜏𝑤

𝜌

= 𝐹 (
𝑦

𝛿3

)                                                                          (33) 

 

Where 
 

𝛿3 = − ∫
𝑢 − 𝑈

√
𝜏𝑤

𝜌

𝑑𝑦                                                                 (34)
∞

0

 

 

For laminar boundary layer it was demonstrated that 
Equation 01 must be satisfied for similarity solutions to 
exist. In turbulent boundary layer this same type of free-
flow velocity profile must be satisfied, so that equilibrium 
boundary layer occurs, satisfying the similarity principle 
(Kays and Crawford, 1983).  

The turbulent coefficient of friction for the equilibrium 
boundary layer can be correlated with β through an 
empirical relation (Kays and Crawford, 1983): 
 

𝐶𝑓
2⁄

(
𝐶𝑓

2⁄ )
𝛽=0

=
1

(1 +
𝛽

5
)

                                                                 (35) 

 
For turbulent boundary layer, assuming equilibrium 
boundary layer, the Stanton number is determined for null 
pressure gradient, β = 0, through the expression (Kays 
and Crawford, 1983): 
 

𝑆𝑡𝑥

=

𝐶𝑓
2⁄

√𝐶𝑓
2⁄ (13.2𝑃𝑟 − 10.16) + 0.9

                                              (36) 
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RESULTS AND DISCUSSION 
 
Results were obtained for velocity and temperature 
profiles, and associated values, such as friction 
coefficient and Stanton number, as a function of the 
pressure gradient parameter and Prandtl number. 
Numerical results were computed using Fortran (1995) 
language and graphical results were obtained through 
software Grapher (2004). 

Figure 2 presents results for velocity profile, f', and 
dimensionless viscous stress, f'', for laminar regime in 
extreme situations, in β=-0.2 and β=1.0, in relation to the 
results obtained for flat plate, β=0. These conditions, as 
already pointed out, represent, respectively, the surface 
boundary layer detachment condition and the two-
dimensional stagnation flow condition. It is observed that, 
for β=-0.2, the viscous stress is equal to zero on the 
surface, as expected.  

In Equation 7, for 𝛽 = 0, since 𝑓′ = 0 on the wall, 𝑓′′′ is 

also zero and, as a consequence, 𝑓′′ has a maximum 

value on the wall. For 𝛽 < 0 values, 𝑓′′ also has a 
maximum value, but the maximum point distances itself 
from the wall, and the values of 𝑓′′ on the wall are lower 

than that of 𝛽 = 0.0. In fact, it can be observed that the 
viscous tension in the wall decreases to negative 𝛽 

values and becomes zero in 𝛽 near -0.2.  

For accelerated flows, 𝛽 > 0, the maximum value also 
occurs on the wall, and these values increase with 
increasing acceleration of the flow. Since the viscous 
stress is zero on the wall, where the separation of the 
flow occurs, 𝑓′ has a minimum at this point, as can be 

seen from Figure 2. For accelerated flow, 𝛽 = 1.0, a 
decrease in the displacement thickness, relative to flat 
plate flow, 𝛽 = 0.0, can be observed. 

Table 1 present comparisons of results for 
displacement thickness, 𝛿1, momentum thickness, 𝛿2, 
and the inverse of shape factor, 𝐻21, in laminar regime. 
The consistency of the results obtained can be verified. 
For highly accelerated flows, better consistency is 
achieved between models. 

Figure 3 presents results for temperature profile and 
dimensionless temperature gradient in laminar regime 
and Pr = 1.0. The most important results, which should be 

emphasized, are the values of the surface temperature 
gradient, since the integral parameters associated to the 
temperature field are strongly associated with it. It can be 
observed that the temperature gradient decreases with 
lower values of 𝛽, ie, the more accelerated the flow, the 
greater the temperature gradients in the wall. Equivalent 
to what occurs with the thickness of the hydrodynamic 
boundary layer, the thermal boundary layer thickness 
also decreases to higher 𝛽 values. In addition, another 
factor to be emphasized, the profile and the temperature 
gradient depend strongly on the solution of the velocity 
field, according to Equations 16 and 17.  

Figure 4 presents the results of a dimensionless 
coefficient of friction in the laminar regime determined by: 
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Figure 2. Solutions for dimensionless viscous velocity (f’’) and velocity profile (f’). 

 
 

Table 1. Numerical comparisons in laminar regime for the inverse of Shape Factor 
(𝐻21). 
 

β 
Results 

 
Evans (1968) 

δ1 δ2 H21 δ1 δ2 H21 

-0.2** 2.3587 0.5852 0.2400  2.3588 0.5854 0.2482 
-0.019 2.0064 0.5762 0.2834  2.0068 0.5765 0.2873 
-0.18 1.8714 0.5673 0.3006  1.8716 0.5677 0.3033 
-0.15 1.6468 0.5449 0.3295  1.6470 0.5452 0.3310 
-0.12 1.5111 0.5258 0.3472  1.5113 0.5263 0.3482 
-0.10 1.4423 0.5147 0.3562  1.4427 0.5150 0.3570 
0.0 1.2164 0.4695 0.3856  1.2168 0.4696 0.3859 
0.2 0.9839 0.4081 0.4147  0.9842 0.4082 0.4148 
0.3 0.9108 0.3856 0.4234  0.9110 0.3857 0.4234 
0.4 0.8525 0.3666 0.4300  0.8527 0.3667 0.4301 
0.6 0.7639 0.3359 0.4397  0.7640 0.3359 0.4397 
0.8 0.6986 0.3119 0.4464  0.6987 0.3118 0.4463 
1.0 0.6480 0.2924 0.4514  0.6480 0.2923 0.4513 

 

**β = -0.19883768 
 
𝐶𝑓

2
=

𝑓′′(0)

𝑅𝑒𝑥

1

2(2 − 𝛽)1/2
                                                           (37) 

 
And 
 

(
𝐶𝑓

2
)𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 =

[𝐹(𝛽)
𝐶𝑓(𝛽=0)

2
]

(1 +
𝛽

5
)

                                             (38) 

 
𝐶𝑓(𝛽 = 0)

2
=

0.332

𝑅𝑒𝑥

1

2

                                                               (39) 

 
where 

 

𝐹(𝛽) = 0.992436221 + 3.670315583𝛽 − 2.382778474𝛽2

+ 2.203613278𝛽3                                   (40) 
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Figure 3. Temperature profile (𝜃) and dimensionless temperature gradient (𝜃′) for laminar 
thermal layer (Pr = 1.0). 

 
 

 
 

Figure 4. Dimensionless coefficient of friction (
𝐶𝑓

2
) as a function of the Reynolds number (𝑅𝑒𝑥) 

for laminar regime. 

 
 
𝐹(𝛽) is obtained empirically from the data available in 
Evans (1968). 

It is observed that the new empirical solution, Equation 
38, is very convenient, since it eliminates the need to  
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Figure 5. Non-dimensional coefficient of friction (
𝐶𝑓

2
) as a function of Reynolds 

number (𝑅𝑒𝑥) for turbulent regime on smooth surface. 

 
 
solve the hydrodynamic boundary layer equation to 
obtain the coefficient of friction for the entire range of β. 
This is one of more significant and important result 
presented in this work, since the results differ significantly 
only for values of β <-0.15, and low Reynolds number 
values along the surface. 

Figure 5 shows the results obtained for the 
dimensionless friction coefficient for turbulent regime on 
smooth surface. The highlight corresponds to the 
Schultz-Grunow (1941) modified solution. The analytical 
solution, Equation 35, and Schultz-Grunow's empirical 
equation, Equation 42, associated with the modification 
proposed by Kays and Crawford (1993), for pressure 
gradient flows within the range analyzed in this work, -0.2 
< 𝛽 < 1.0, are in good agreement. It is, therefore, a result 
compatible with that presented in Figure 4, since the 
solution eliminates the need to solve the system of 
equations for velocity field where 𝛽 is different from zero.  
 
𝐶𝑓

2
=

0.0594

2𝑅𝑒𝑥
1/5 ∗ (1 +

𝛽

5
)

                                                          (41) 

 

(
𝐶𝑓

2
)𝐸𝑥𝑝 = [0.185(𝐿𝑜𝑔10(𝑅𝑒𝑥))

−2.584
] / (1

+
𝛽

5
)                                                             (42) 

 
All previous discussion assumes boundary layer for 
smooth surface. The effect of roughness on the turbulent 

boundary layer occurs primarily close to the surface, and 
this leads to the definition of a rough Reynolds number: 
 

Rek =
uτks

ϑ
                                                                                   (43) 

 
where ks is the absolute roughness. 

Figure 6 shows the comparison between valid results 
for smooth and rough surfaces, for any range of values of 
the pressure coefficient previously defined, 0.2<β<1.0. 

The characteristics of the hydrodynamic and thermal 
boundary layer are controlled by important parameters 
such as speed and temperature, shape and surface 
conditions. Surface conditions require special attention 
where roughness is an inherent characteristic. 
Roughness usually increases the friction resistance and 
the heat transfer coefficient for a same Reynolds number, 
relative to the smooth surfaces. In fact, the roughness 
produces higher values for the friction factor and Stanton 
number, which result in speed and temperature deficits at 
the relative long distance of the surface when compared 
to the smooth surface. 

For Rek > 65 we have what is called the regime for a 
completely rough surface or even a completely rough 
flow Pimenta et al. (1975). A completely rough regime is 
what is considered in this analysis and, for all intents and 
purposes, we have Rek=70. It can be shown that the 
friction coefficient, for a completely rough regime, can be 
obtained by the following expression, where the 
correction factor for the pressure gradient effect is  
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Figure 6. Comparison for dimensionless friction coefficient (
𝐶𝑓

2
) between smooth and 

rough surfaces in turbulent regime. 

 
 
introduced, according to the empirical proposal of Kays 
and Crawford (1983): 
 

(
𝐶𝑓

2
)𝑟𝑢𝑔 =

0.168

[ln (
32.1𝑥

𝑅𝑒𝑥

1
5𝑘𝑠

)]

2

(1 +
𝛽

5
)

                                          (44) 

 
The Stanton number, by definition, is obtained from the 
expression below: 
 

𝑆𝑡𝑥 =
𝑁𝑢𝑥

Pr. 𝑅𝑒𝑥

                                                                              (45) 

 
For laminar regime 
 

𝑁𝑢𝑥 =
(

𝑑𝜃

𝑑𝜂
)0√

𝑅𝑒𝑥

2

(2 − 𝛽)1/2
                                                                     (46) 

 
In any situation, laminar or turbulent regime, for constant 
surface temperature and constant free-flow velocity, the 
Stanton number can be expressed in the form: 
 
𝑆𝑡 = 𝐶𝑅𝑒𝑥

−𝑛                                                                               (47) 
 
In turbulent regime, zero pressure gradient, smooth 
surface, Kays and Crawford present the following 
equation, which fits excellent with experimental results for 
0.5<Pr<1.0 and 5.105<Rex<5.106; C = 0.0287Pr-0.4 and 

 n=0.20. 
Introducing the proposed correction for inclined 

surfaces: 
 

𝑆𝑡𝑇𝑢𝑟𝑏𝐸𝑥𝑝 =
0.0287𝑃𝑟−0.4𝑅𝑒𝑥

−0.20

1 +
𝛽

5

                                        (48) 

 

Figure 7 shows the theoretical-experimental comparison 
for Stanton number in laminar regime, for β=1.0. The 
results are quite satisfactory for Prandtl numbers close to 
the unit, and deviate to high values of the Prandtl 
number, as expected.  

Figure 8 presents theoretical and experimental data for 
turbulent regime, on smooth and rough surfaces, for the 
number of Pr=1.0. As expected, heat transfer on rough 
surfaces outweighs heat transfer to smooth surfaces, for 
the same Reynolds number.  
The theoretical expression for determination of Stanton's 
number is given by, following application of empirical 
modification suggested by Kays and Crawford (1983): 
 

𝑆𝑡𝑟𝑢𝑔

=
(
𝐶𝑓

2⁄ )𝑟𝑢𝑔

(√(
𝐶𝑓

2⁄ )
𝑟𝑢𝑔

(13.2𝑃𝑟 − 10.16) + 𝑃𝑟𝑡) (1.0 +
𝛽

5
)

          (49) 

 
In a completely rough flow, the molecular thermal 
conductivity remains as a significant variable, influence 
that can be established through the number of turbulent 
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Figure 7. Stanton number (𝑆𝑡) for laminar regime as a function of Reynolds 
number. 

 
 
Prandtl, 𝑃𝑟𝑡. The turbulent Prandtl number can be 
considered, for gases, to be 0.9, which in fact represents 
an average value.  

The equation for determination of experimental Stanton 
number, with the correction for the pressure gradient, is 
given by: 
 

𝑆𝑡𝐸𝑥𝑝 =
(

𝐶𝑓

2
)𝑟𝑢𝑔

(𝑃𝑟𝑡 +
√(

𝐶𝑓

2
)𝑟𝑢𝑔

𝑆𝑡𝑘

⁄
)(1 +

𝛽

5
)

                                  (50) 

 

𝑆𝑡𝑘 = 𝑅𝑒𝑘
−0.2𝑃𝑟−0.44                                                                 (51) 

 
Where 𝑆𝑡𝑘 is a function of the roughness. 

Figure 8 show that, for accelerated flow, the values 
approximate the result obtained for laminar flow, for 
smooth and rough surfaces. This effect is called 
laminarization of the boundary layer (Kays et al., 1969) 
and demonstrates that the acceleration effect tends to 
cause a "retransmission" of the turbulent boundary layer 
to a pure laminar boundary layer. This is an effect 
associated with decompression of the boundary layer, 
where the roughness is immersed in the laminar 
sublayer. Table 2 shows the effect of the tendency for 
laminar flow in the numerical determination of the Stanton 
number. 

Experimental results, with correction factor, obtained by 
Pimenta et al. (1975) and Kays and Crawford (1983) 
were used for comparison, Equation (50). The data were 
taken from the table of Pimenta (1975), where U=130.63 
ft/s and without surface perspiration effect. The value of 
Ks is equal to 1.0 mm for all purposes in this analysis. 

It is important to emphasize that there is experimental 
evidence that the shape factor tends to 1.47, for smooth 
surface and highly accelerated flows in completely 
turbulent flow. This shows that despite the tendency to 
the laminar regime, the flow remains turbulent because 
the value of the form factor for highly accelerated laminar 
flow is approximately 2.2, as presented through the 
results obtained in this work, Figures 9 and 10. 

There is theoretical and experimental evidence that the 
detachment of the turbulent boundary layer is delayed in 
relation to the laminar boundary layer detachment. The 
numerical results presented through Figure 9 
demonstrate that in fact this occurs. Note, Figure 10, that 
the smallest value for the parameter that establishes the 
pressure gradient is equal to 𝛽 = −0.19883768 ≅ −0.200, 
for laminar regime. 
In fact, as the results of Figure 11 show, the 
dimensionless viscous stress passes through a local 
maximum point, close to 𝛽 = −0.2, decreases 

asymptotically to approximately 𝛽 = −0.24, where it 
becomes equal to zero, for turbulent regime on smooth 
surface. 
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Figure 8. Theoretical-experimental comparisons for Stanton number (𝑆𝑡) in turbulent 
regime, as a function of Reynolds number for smooth and rough surfaces. 

 
 
 
Table 2. Stanton number (St) for turbulent regime in smooth and rough surfaces. 
 

𝑹𝒆(𝒙) 

𝜷 = 𝟎. 𝟎 
 
 

𝜷 = 𝟏. 𝟎 

Equation (48) 
Smooth 

Equation (50) 
Rough 

Equation (48) 
Smooth 

Equation (50) 
Rough 

1.01E5 2.864E-3 4.721E-3  2.387E-3 2.977E-3 
2.01E5 2.496E-3 3.988E-3  2.080E-3 2.804E-3 
4.01E5 2.174E-3 3.412E-3  1.812E-3 2.398E-3 
6.01E5 2.005E-3 3.132E-3  1.671E-3 2.199E-3 
8.01E5 1.9893E-3 2.953E-3  1.577E-3 2.073E-3 
1.00E6 1.810E-3 2.824E-3  1.509E-3 1.983E-3 
1.20E6 1.746E-3 2.726E-3  1.455E-3 1.913E-3 
1.40E6 1.693E-3 2.646E-3  1.411E-3 1.857E-3 
1.60E6 1.648E-3 2.580E-3  1.373E-3 1.810E-3 
1.80E6 1.610E-3 2.524E-3  1.341E-3 1.770E-3 
2.00E6 1.576E-3 2.475E-3  1.314E-3 1.736E-3 

 
 
CONCLUSIONS 
 
The analysis, for flow and heat transfer in laminar regime 
and turbulent regime, on smooth and rough inclined 
surface, includes theoretical aspects, experimental 
results and empirical correlations. An extensive review of 
procedures associated to the boundary layer similarity 
method, used for solution of nonlinear equations 
systems, was presented. 

In a turbulent regime, through the integral analysis of 
the momentum, the equations were first obtained for null 

pressure gradient and extended through a correction 
factor, for a wide range of the pressure gradient 
parameter. 

The main result of the present work is associated with 
the fact that it is possible to obtain empirical solutions 
compatible with analytical solutions for laminar and 
turbulent flow in the whole range of values for the 
pressure parameter, 𝛽, considered in the analysis. This 
result allows us to use reliable solutions for numerous 
practical problems without having to solve the system of 
nonlinear equations, which is the main source of 



14            Adv. Sci. Eng. Res. / Nogueira et al. 
 
 
 

0 0.4 0.8



1

1.5

2

2.5

3

3.5

H
12

T
u

rb

H12Turb
-0.21         2.70

-0.209       2.68

-0.208       2.64

-0.207       2.60

-0.206       2.56

-0.205       2.52

-0.204       2.48

-0.203       2.44

-0.202       2.41

-0.201       2.37

-0.200       2.33

-0.195       2.20

-0.19         2.06

-0.18         1.87

-0.17         1.75

-0.16         1.67

-0.15         1.61

-0.14         1.56

-0.12         1.51

-0.1           1.47

-0.05         1.35

 0.00         1.29

    H12=B . ln()+A

  B=0.069487 - A=1.47

             

Smooth Surface

 
 

Figure 9. Shape Factor (𝐻12) for turbulent regimen on smooth surface. 
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Figure 10. Shape factors (𝐻12) for laminar and turbulent regimes on smooth surfaces. 

 
 
difficulties in the analysis performed.  

As a motivation for the development of future works, it 
can be stated that problems associated to the determi-
nation of micrometeorological parameters, through the 
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 0.100         0.58702400         0.5870351         0.9720
 0.200         0.68686770         0.6867081         1.3274
 0.300         0.77467040         0.7747545         1.5962
 0.400         0.85429670         0.8544212         1.8303
 0.500         0.92811050         0.9276800         2.1035
 0.600         0.99597750         0.9958364         2.2536 
 0.800         1.12038900         1.1202676         2.5240
 1.000         1.23282200         1.2325876         2.7322

Laminar

Turbulent

-0.24

 
 

Figure 11. Dimensionless viscous surface tension (𝑓′′) for laminar and turbulent regimes. 

 
 
Monin-Obukov similarity theory, in inclined rugged 
surface, can be solved in an approximate way through 
the application of the analysis performed in this work. 
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