

Journal of Agricultural and Crop Research Vol. 7(9), pp. 170-180, September 2019 doi: 10.33495/jacr_v7i9.19.149 ISSN: 2384-731X Research Paper

Evaluation of wheat genotypes to rust diseases (*Puccinia* spp.) under agroclimatic conditions of Egypt and China

Mohamed A. Gad^{1,2} • Hao-xing Li³ • Ming-ju Li^{1*} • Walid M. El-Orabey² • Mohamed A. Hasan²

¹Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China. ²Wheat Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt. ³College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

*Corresponding author. E-mail: lily69618@163.com

Accepted 6^h September, 2019.

Abstract. Wheat cultivars vary in their responses to rust diseases during growing seasons due to the climatic conditions, the quantity of pathogen source, and time of infection. Forty-seven wheat genotypes planted in Egypt and Yunnan, China during 2015/2016, 2016/2017, 2017/2018 growing seasons and evaluated at field level to determine their effectiveness to stripe, leaf, and stem rust diseases under natural conditions. Results showed that 26, 29 and 34 genotypes in Egypt, while 17, 21, and 16 genotypes in Yunnan were resistant to stripe rust during 2016, 2017 and 2018 seasons, respectively. Also, eight, nine, and ten genotypes in Egypt were resistant to leaf rust during 2016, 2017, and 2018 seasons, respectively. In Yunnan, there was no infection occurred in 2016 to leaf rust while 43 and 44 wheat lines were resistant to leaf rust in 2017 and 2018 seasons, respectively. In Egypt, 37, 40, and 29 lines were resistant to stem rust in 2016, 2017, and 2018 seasons, respectively. While in Yunnan, there was no infection recorded for stem rust during all three growing seasons. Results exhibited that the resistance genes *Yr5, Yr15, Yr17, YrTr1, Yr (7, 25)* were resistant to stripe rust, and *Lr19* was resistant to leaf rust during all growing seasons in both locations, while the resistance genes *Sr24, Sr36, Sr38* were resistant to stem rust in Egypt during all years of the study, for that, these genes can be used safely in the breeding program for releasing new commercial cultivars under agroclimatic conditions of Egypt and Yunnan, China.

Keywords: Wheat, rust, resistance genes, Egypt, China.

INTRODUCTION

Wheat (*Triticum aestivum* L.) is an essential source of carbohydrates, multiple nutrients, and dietary fibre (Shewry and Hey, 2015). In 2018/2019, the whole world wheat production was 730.55 million metric tons, while China and Egypt produced 131.43 and 8.45 million metric tons, contributed 17.99 and 1.16% to world production, respectively (USDA, 2019). Therefore, the safety of wheat production in China and Egypt play a crucial role in world food safety. Wheat rusts, however, including stripe

rust (*Puccinia striiformis* f. sp. *tritici*), leaf rust (*Puccinia triticina*), and stem rust (*Puccinia graminis* f. sp. *tritici*), cause severe yield losses worldwide, threating safety of wheat production (Wellings, 2011).

Wheat rusts breakout frequently in both of China and Egypt. The estimated yield losses by stripe rust are at least 5.5 million tons per year at a global level (Beddow *et al.*, 2015). In China, stripe rust has been considered the most severe disease of grain since the first major

	_	Gh	arbiya-A	Air temp	. °C		Kunming-Air temp. °C							
Months	2015/2016		2016/2017		2017	2017/2018		2015/2016		2016/2017		/2018		
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
November	12	26	14	28	16	24	6	11	4	22	3	23		
December	10	21	11	23	10	20	-1	18	3	19	1	20		
January	8	20	10	21	9	15	-1	18	2	8	0	19		
February	9	22	10	24	12	20	1	18	4	8	-2	23		
March	10	25	11	26	15	25	5	25	5	25	6	24		
April	13	30	12	32	17	28	9	24	9	17	7	28		

Table 1. Temperature datasets of experimental sites during 2016, 2017, and 2018 wheat growing seasons.

epidemic in 1950 (Kang *et al.*, 2010). It led to a significant yield loss and affected more than 67,000 square kilometers of cropland between 2000 and 2016 due to the massive extension of the epidemic (Shi *et al.*, 2018). In Egypt, Gebrel *et al.* (2018) reported disease severity of stripe rust reached to 30% in some bread wheat cultivars during 2017/2018 growing season and found that rust diseases have a strong negative correlation with grain yield. Losses in grain production in susceptible varieties may be reaching to 100% if an infection has occurred very early by stripe rust (Afzal *et al.*, 2007).

Leaf rust can cause more than 40% production losses when the disease is severe on susceptible cultivars (Khan *et al.*, 2013). In China, more than 15 million hectares of wheat are affected annually. Regular wheat leaf rust epidemics occur in the southwest and northwest, the middle and lower Yangtze River Valley and the southern Huang-Huai-Hai region of China (Huerta-Espino *et al.*, 2011). Significant yield losses were documented in Gansu, Shanxi, Henan, and Anhui provinces of China in 2012 (Li *et al.*, 2014; Zhou *et al.*,2013). In Egypt, leaf rust is the most common and one of important wheat diseases. It caused severe losses in grain yield reaches more than 23%, and in epidemic years, they may reach up to 50% (Kassem *et al.*, 2011; Draz *et al.* 2015).

In China, stem rust has controlled since the 1970s. While, with the emergence of aggressive race Ug99, which breakdown the resistance gene *Sr31* became a new threat to wheat production in China, as 60% of wheat cultivars in China contain *Sr31* (Li *et al.*, 2016). Kokhmetova *et al.* (2011) found stem rust have impacts on the entire wheat crop, causing losses in grain yield up to100%. Hasan *et al.* (2016) noted that stem rust disease caused injuries in grain yield in some wheat cultivars in Egypt, and disease severity reaches up to more than 60%.

Egypt located in north-eastern Africa, which has water boundaries over the Mediterranean Sea and the Red Sea, considered a part of the Middle East, the origin of common wheat, also the most likely source of newly spreading, optimum-temperature-adapted strains (Ali *et al.*, 2014). While Yunnan, located in south-western China, borders on Myanmar westward, close to the Himalayan, the source of wheat yellow rust disease. Previous research indicated that the Himalayan and neighbouring regions such as Pakistan, Nepal, as well as China, are the centre of origin for wheat stripe rust pathogen (Ali *et al.*, 2014). Thus, Yunnan is a vital ring for the migration chain of wheat stripe rust pathogen in the world. Therefore, monitor the effectiveness of resistance genes to wheat rust in these hotspots will provide useful information for breeding and rational use of resistant genes. The objective of this study was to determine the effectiveness of various resistance genes to the stripe, leaf and stem rust diseases at field level under natural conditions in Gharbiya, Egypt and Kunming, Yunnan, China during three growing seasons (2015 to 2018) to assist in the development of wheat cultivars with high level resistance.

MATERIALS AND METHODS

Experimental site

This experiment conducted at two locations: 1) Gharbiya, Egypt with the geographical position N 23° 33' Latitude, E 89° 44' Longitude, 2) Kunming, China with 2140 m Altitude, N 25° 07'11" Latitude, and E 102° 51'12" Longitude. Both of the two locations have similar latitude, most of the area located on the North of the Tropic of Cancer, N 23.5° Latitude. The monthly temperature datasets of the experimental sites listed in Table 1, which was an essential resource for monitoring and understanding climate variability and climate change and its impacts on the occurrence of rust diseases.

Experimental material and design

Forty-seven wheat rust resistance genes derived from CIMMYT used in this work (Table 2). Field assays conducted in a randomized complete block design (RCBD) with four replicates for each genotype during 2015/2016, 2016/2017, and 2017/2018 wheat growing seasons. Each genotype was grown in two lines of 3 meter long with 30 centimeters apart and spaced at 20

No.	Genotypes	Property	Resistance Gene
1.	Avocet S*6/Yr1	Spring	Yr1
2.	Avocet S*6/Yr5	Spring	Yr5
3.	Avocet S*6/Yr6	Spring	Yr6
4.	Avocet S*6/Yr7	Spring	Yr7
5.	Avocet S*6/Yr8	Spring	Yr8
6.	Avocet S*6/Yr9	Spring	Yr9
7.	Avocet S*6/Yr10	Spring	Yr10
8.	Avocet S*6/Yr15	Spring	Yr15
9.	Avocet S*6/Yr17	Spring	Yr17
10.	Avocet S*6/Yr27	Spring	Yr27
11.	Avocet-YRA*3/3/ALTAR 84/AE.SQ//OPATA	Spring	Yr28
12.	Avocet-YRA*3/PASTOR	Spring	Yr31
13.	Avocet S*6/Yr32	Spring	Yr32
14.	Avocet R	Spring	YrA
15.	Avocet S*6/YrSP	Spring	YrSP
16.	AvSYrTres1	Spring	YrTr1
17.	T.spelta album	Winter	Yr5
18.	Hybrid 46	Winter	Yr(4.H46.3b.4b.+)
19.	Reichersberg 42	Winter	Yr(7, 25)
20.	Heines Peko	Winter	Yr(2,6)
21.	Nord Desprez	Winter	Yr(3,+)
22.	Compare	Winter	Yr(8,19)
23.	Carsten V	Winter	Yr32
24.	Spaldings Prolific	Winter	YrSpP
25.	Heines VII	Winter	Yr(2,+)
26.	Kalyansona	Spring	Yr(2, 29)
27.	Virmorin 23	Winter	Yr(3, V23,+)
28.	Hugenoot	Winter	Yr25
29.	Jupateco R	Spring	Yr18
30.	Transfer/6*TC	Spring	Lr9
31.	TC*6/Exchange	Spring	Lr16
32.	TC*7/Tr	Spring	Lr19
33.	TC*6/Agent	Spring	Lr24
34.	TC*6/ST-1.25	Spring	Lr26
35.	ISr5-Ra	Spring	Sr5
36.	ISr6-Ra	Spring	Sr6
37.	Verstein Sr9e	Spring	Sr9e
38.	I <i>Sr11</i> Ra	Spring	Sr11
39.	CnS_T_mono_deri	Spring	Sr21
40.	Lc <i>Sr24</i> Ag	Spring	Sr24
41.	Eagle Sr26 McIntosh	Spring	Sr26
42.	BtSr30 Wst	Spring	Sr30
43.	Sr31 (Benno)/6*LMPG-6 DK42	Spring	Sr31
44.	W2691SrTt-1	Spring	Sr36
45.	Trident Sr38	Spring	Sr38
46.	Avocet S	Spring	None
47.	Little Club	Spring	None

 Table 2. List of wheat genotypes evaluated for wheat rusts in Egypt and China during 2016, 2017, and 2018 growing seasons.

Response value	Description	Infection type
0	No visible symptoms	Immune (0)
0.2	Uredia minute, supported by distinct necrotic area	Resistant (R)
0.4	Uredia small to medium, in green islands surrounded by chlorotic tissue	Moderately resistant (MR)
0.8	Uredia medium in size, no necrotic but chlorotic areas may be present	Moderately susceptible (MS)
1	Uredia large, no necrosis but chlorosis may be evident	Susceptible (S)

Table 3. Adapted scale for rust infection type in wheat.

centimeters apart between the rows. Regular agricultural practices were carried out, and susceptible cultivar as Morocco was grown as spreader rows to spread rust inoculums under natural infection conditions.

Disease assessment

When rust symptoms were fully developed, nearly at the early dough stage (Large, 1954), the rust reaction data of adult plant scored as plant response and rust severity. Plant response expressed in five infection types (ITs), according to (Johnston and Browder, 1966). When the spreader plants were 50% infected, the rust data were scored four times for disease severity as percentage coverage of leaves with rust pustules using Cobb's scale modified by Peterson *et al.* (1948) at weekly intervals (Table 3). Partial resistance (slow rusting) behaviour assessed through host response and epidemiological parameters estimates as the average coefficient of infection (ACI). ACI calculated according to (Saari and Wilcoxson, 1974; Pathan and Park, 2006).

ACI = Values of rust severity × Response value

RESULTS

Forty-seven wheat rust resistance genes derived from CIMMYT cultivated and evaluated to determine their effectiveness to rust diseases at field level between two locations Gharbiya, Egypt and Kunming, China during 2015/2016, 2016/2017, and 2017/2018 wheat growing seasons. Results showed that 9 genotypes, i.e. AvS/Yr5, Yr15, Yr17, YrTr1, T.sp/Yr5, Yr(7,25), Lr9, Lr16, Sr6, and 8 genotypes, i.e. YrTr1, T.sp/Yr5, Yr (7, 25), Yr(2,6), Yr(2,+), Lr19, Sr5, Sr24, while 28 genotypes, i.e. Yr1, AvS/Yr5, Yr8, Yr10, Yr15, Yr27, YrSP, YrTr1, T.sp/Yr5, Yr(4,H46,3b,4b,+), Yr(7, 25), Yr(2,6), Yr(3,+), Yr(8,19), Yr32, YrSpP, Yr(2,+), Yr2, Yr (3,V23,+), Yr25, Yr18, Avocet S, Lr9, Lr16, Lr26, Sr24, Sr36, Sr38 were gave the highest values of disease resistance 100% efficiency to stripe, leaf and stem rust diseases, respectively during the three successive growing seasons.

Evaluation of wheat genotypes under agro-climatic conditions of Egypt

Evaluation of wheat lines to stripe rust disease

During wheat growing season 2015/2016, results showed that the stripe rust severity for the examined lines varied from 0 to 40% with different ITs under field conditions. Out of 47 tested genotypes, 26 genotypes showed desirable resistance to stripe rust disease, rust severities ranged from 0 to 0.2%. On the other hand, 21 genotypes showed different ITs (MR, MS and S) with varying levels of disease severity ranged from 3% to 40% (Table 4). In season 2016/2017, results revealed that the number of resistant genotypes was 29, which gave immune reaction 0. While 18 genotypes showed different ITs (MS and S) with different disease severity ranged from 3 to 50% (Table 4). In season 2017/2018, results revealed that the number of resistant genotypes increased to 34, which gave immune reaction 0. While 13 genotypes showed different ITs (MS and S) with different disease severity ranged from 3% to 40% (Table 4).

Evaluation of wheat lines to leaf rust disease

In season 2015/2016, results showed that leaf rust severity of the examined lines varied from 0 to 80% with different ITs under field conditions. Out of 47 tested genotypes, eight genotypes showed desirable resistance to leaf rust (Table 5). In season 2016/2017, results revealed that the number of resistant genotypes was nine, which gave immune reaction ranged from 0 to 0.2%. On the other hand, 38 genotypes showed different ITs (MS and S) with different disease severity ranged from 3% to 80% (Table 5). In season 2017/2018, results revealed that the number of resistant genotypes increased to ten, which gave immune reaction 0. While 37 genotypes showed different ITs (MS and S) with different disease severity ranged from 3 to 80% (Table 5).

Evaluation of wheat lines to stem rust disease

From season 2015/2016, results revealed that the

							St	ripe Rust					
No	Resistance dene /denotyne		20	016				2017			20	018	
110.	Resistance gene/genotype	Egy	/pt	Chi	na	Egy	ypt	Chi	na	Egy	/pt	Chi	na
		RS	ACI	RS	ACI	RS	ACI	RS	ACI	RS	ACI	RS	ACI
1	Yr1	0	0	100S	100	0	0	60S	60	0	0	0	0
2	AvS/Yr5	0	0	0	0	0	0	0	0	0	0	0	0
3	Yr6	30S	30	100S	100	20S	20	60S	60	10S	10	30S	30
4	Yr7	30MS	24	100S	100	20S	20	60S	60	20S	20	0	0
5	Yr8	0	0	80S	80	0	0	60S	60	0	0	90S	90
6	Yr9	10S	10	90S	90	10S	10	80S	80	0	0	30S	30
7	Yr10	0	0	0	0	0	0	0	0	0	0	5MS	4
8	Yr15	0	0	0	0	0	0	0	0	0	0	0	0
9	Yr17	0	0	0	0	0	0	0	0	0	0	0	0
10	Yr27	30S	30	60MR	24	20S	20	0	0	20S	20	0	0
11	Yr28	20S	20	0	0	10S	10	0	0	10S	10	0	0
12	Yr31	TRS	3	10S	10	10S	10	50S	50	10S	10	40S	40
13	AvS/Yr32	0	0	60MR	24	0	0	0	0	0	0	50S	50
14	YrA	30S	30	80S	80	30S	30	40S	40	20S	20	70S	70
15	YrSP	0	0	100S	100	0	0	20S	20	0	0	30MR	12
16	YrTr1	0	0	0	0	0	0	0	0	0	0	0	0
17	T.sp/Yr5	0	0	0	0	0	0	0	0	0	0	0	0
18	Yr(4,H46,3b,4b,+)	0	0	0	0	0	0	0	0	0	0	40S	40
19	Yr(7, 25)	0	0	0	0	0	0	0	0	0	0	0	0
20	Yr(2,6)	0	0	90S	90	0	0	40S	40	0	0	20S	20
21	Yr(3,+)	0	0	100S	100	0	0	20S	20	0	0	20S	20
22	Yr(8,19)	0	0	100S	100	0	0	10S	10	0	0	40S	40
23	CaV /Yr32	0	0	80S	80	0	0	30S	20	0	0	10S	10
24	YrSpP	0	0	60MR	24	0	0	0	0	0	0	40S	40
25	Yr(2, +)	0	0	70MR	28	0	0	50S	50	0	0	20S	20
26	Yr(2, 29)	TRM R	1.2	100S	100	0	0	30S	40	0	0	0	0
27	Yr (3, V23,+)	0	0	80S	80	0	0	40S	40	0	0	80S	80
28	Yr25	70S	70	70S	70	50S	50	20S	20	40S	40	5MS	4
29	Yr18	0	0	0	0	10MS	8	0	0	TRS	3	0	0
30	Lr9	0	0	0	0	0	0	0	0	0	0	0	0
31	Lr16	0	0	0	0	0	0	0	0	0	0	0	0

Table 4. An average coefficient of infection (ACI) and rust severity (RS) of the evaluated wheat lines to stripe rust under natural conditions of Egypt and China during 2016, 2017, and 2018 growing seasons.

Table 4. Contd

32	Lr19	30S	30	70MR	28	20S	20	0	0	10MS	8	20MS	16
33	Lr24	10S	10	0	0	5S	5	0	0	0	0	20S	20
34	Lr26	0	0	20MR	8	0	0	0	0	0	0	20MS	16
35	Sr5	TRM R	1.2	10MS	8	0	0	0	0	0	0	30S	30
36	Sr6	0	0	0	0	0	0	0March in Kunming.ig ated on 6th	0	0	0	0	0
37	Sr9e	20S	20	60MS	48	TRS	3	30S	30	10S	10	30S	30
38	Sr11	5S	5	0	0	TRS	3	20S	20	0	0	0	0
39	Sr21	TRS	3	0	0	TRS	3	0	0	0	0	10S	10
40	Sr24	30S	30	5MS	4	10S	10	30S	30	20S	20	70S	70
41	Sr26	0	0	10MS	8	0	0	5R	1	0	0	20S	20
42	Sr30	10MR	4	90S	90	0	0	20S	20	0	0	40S	40
43	Sr31	10S	10	60MS	48	10S	10	20S	30	0	0	40S	40
44	Sr36	0	0	20S	20	0	0	40S	40	0	0	40S	40
45	Sr38	TRR	0.6	0	0	0	0	20S	20	0	0	10MS	8
46	Avocet S	40S	40	100S	100	20S	20	50S	50	20S	20	60S	60
47	Little Club	20S	20	20S	20	10S	10	60S	60	10S	10	40S	40

Note: 0-100 = values of rust severity; R-resistant; MR-moderately resistant; MS - moderately susceptible; S - susceptible; TR- Trace = 3.

number of resistant genotypes was 37, which gave resistant reaction ranged from 0 to 0.2%. On the other hand, ten genotypes, which gave resistant response ranged from 2.4 to 40% (Table 6). In season 2016/2017, results revealed that stem rust severity was low. In this regard, the highest number of resistant genotypes observed during this season (40 genotypes) showed immune reaction ranged from 0 to 0.2%, whereas seven genotypes which gave values ranged from 2.4 to 24% (Table 6). In season 2017/2018, results revealed that the number of resistant genotypes was 29, which gave resistant reaction ranged from 0 to 0.2%. While, 18 genotypes showed different ITs (MR, MS, and S) with different disease severity ranged from 1.2 to 50% (Table 6).

Evaluation of wheat genotypes under agroclimatic conditions of China

Evaluation of wheat lines to stripe rust disease

During wheat growing season 2015/2016, results showed that stripe rust severity of the examined lines varied from 0 to 100% with different ITs under field conditions. Out of 47 tested genotypes, 17 genotypes showed desirable/acceptable resistance to stripe rust, which gave resistant reaction 0. On the other hand, 30 genotypes showed different ITs (MR, MS, and S) with different disease severity ranged from 4 to 100% (Table 4). In season 2016/2017, data in Table (4) revealed that the number of resistant genotypes was increased to 21, whereas rust severities ranged from 0 to 0.2%. While 26 genotypes showed differently IT (S) with different disease severity ranged from 10 to 80%. In season 2017/2018, data in Table 4 revealed that the number of resistant genotypes was 16, which gave immune reaction 0. While 31 genotypes showed different ITs (MR, MS, and S) with different disease severity ranged from 4 to 90%.

Evaluation of wheat lines to leaf rust disease

In season 2015/2016, results showed that leaf rust severity for the examined lines was 0 under field conditions. All 47 tested genotypes showed desirable/acceptable resistance to leaf rust (Table 5). In season 2016/2017, data in Table (5) revealed

 Table 5. An average coefficient of infection (ACI) and rust severity (RS) of the evaluated wheat lines to leaf rust under natural conditions of Egypt and China during 2016, 2017 and 2018 growing seasons.

		Leaf Rust												
No.	Resistance gene		201	6			,	2018						
NO.	/genotype	Egy	pt	Cł	nina	Egyp	t	Ch	ina	Egyp	ot	Chi	ina	
		RS	ACI	RS	ACI	RS	ACI	RS	ACI	RS	ACI	RS	ACI	
1	Yr1	10S	10	0	0	10MS	8	0	0	5MS	4	0	0	
2	AvS/Yr5	40MS	32	0	0	20MS	16	0	0	60MS	48	0	0	
3	Yr6	40S	40	0	0	30S	30	0	0	50S	50	0	0	
4	Yr7	50S	50	0	0	60S	60	0	0	60S	60	0	0	
5	Yr8	40S	40	0	0	60S	60	0	0	60S	60	0	0	
6	Yr9	70S	70	0	0	20S	20	0	0	50S	50	0	0	
7	Yr10	TRMR	1.2	0	0	20MRMS	6.4	0	0	5MRMS	1.6	0	0	
8	Yr15	20S	20	0	0	10S	10	0	0	5S	5	0	0	
9	Yr17	60S	60	0	0	40S	40	0	0	40S	40	0	0	
10	Yr27	10S	10	0	0	20S	20	0	0	40S	40	0	0	
11	Yr28	70MS	56	0	0	30MS	24	0	0	5MS	40	0	0	
12	Yr31	50MS	40	0	0	20MS	16	0	0	30MS	24	0	0	
13	AvS/Yr32	70S	70	0	0	30S	30	0	0	50S	50	0	0	
14	YrA	50S	50	0	0	20S	20	0	0	40S	40	0	0	
15	YrSP	50S	50	0	0	30S	30	0	0	40S	40	0	0	
16	YrTr1	0	0	0	0	0	0	0	0	0	0	0	0	
17	T.sp/Yr5	0	0	0	0	0	0	0	0	0	0	0	0	
18	Yr(4,H46,3b,4b,+)	5MS	4	0	0	TRMS	2.4	0	0	TRMS	2.4	0	0	
19	Yr(7, 25)	0	0	0	0	0	0	0	0	0	0	0	0	
20	Yr(2,6)	0	0	0		0	0	0	0	0	0	0	0	
21	Yr(3,+)	10S	10	0	0	TRS	3	5MS	4	5s	5	0	0	
22	Yr(8,19)	10MS	8	0	0	TRMS	2.4	5MR	2	0	0	0	0	
23	CaV /Yr32	60S	60	0	0	40S	40	0	0	40S	40	0	0	
24	YrSpP	5MS	4	0	0	TRMS	2.4	0	0	TRS	3	0	0	
25	Yr(2, +)	0	0	0	0	0	0	0	0	0	0	0	0	
26	Yr(2, 29)	TRMS	2.4	0	0	10MS	8	0	0	30MS	24	0	0	
27	Yr (3, V23,+)	TRMR	1.2	0	0	0	0	IMS	0.8	0	0	0	0	
28	Yr25	TRMS	2.4	0	0	TRMS	2.4	0	0	5MS	4	0	0	
29	Yr18	40S	40	0	0	40MS	40	0	0	50S	50	0	0	
30	Lr9	80S	80	0	0	TRMS	2.4	0	0	30MS	24	0	0	
31	Lr16	80s	80	0	0	40MS	32	0	0	50MS	40	0	0	
32	Lr19	0	0	0	0	0	0	0	0	0	0	0	0	
33	Lr24	80S	0	0	0	80S	80	0	0	70S	70	0	0	
34	Lr26	30S	0	0	0	10S	10	0	0	20S	20	5MS	4	
35	Sr5	0	0	0	0	0	0	0	0	0	0	0	0	
36	Sr6	TRMR	1.2	0	0	10R	2	0	0	10MR	4	0	0	
37	Sr9e	40S	40	0	0	20S	20	0	0	30S	30	0	0	
38	Sr11	5S	5	0	0	TRMS	2.4	0	0	5MS	4	0	0	
39	Sr21	5S	5	0	0	TRMS	2.4	0	0	20S	20	0	0	
40	Sr24	0	0	0	0	0	0	0	0	0	0	0	0	
41	Sr26	5S	5	0	0	TRMS	2.4	0	0	TRMS	2.4	0	0	
42	Sr30	10S	10	0	0	20S	20	0	0	30S	30	0	0	
43	Sr31	20S	8	0	0	40S	40	0	0	30S	30	0	0	
44	Sr36	5S	5	0	0	10S	10	0	0	40S	40	0	0	
45	Sr38	60MS	48	0	0	5S	50	0	0	20S	20	0	0	
46	Avocet S	60S	60	0	0	30S	30	0	0	50S	50	60S	60	
47	Little Club	80S	80	0	0	70S	70	0	0	80S	80	60S	60	

Note: 0-80 = values of rust severity; R - resistant; MR - moderately resistant; MS - moderately susceptible; S - susceptible; TR- Trace = 3.

that the number of resistant genotypes was 43, which gave immune reaction 0. On the other hand, four genotypes showed different ITs (MR, MS, and S) with different disease severity ranged from 0.8 to 10%. In season 2017/2018, data in Table 5 revealed that the number of resistant genotypes increased to 44, which gave immune reaction 0. While three genotypes showed different ITs (MS and S) with different disease severity.

Evaluation of wheat lines to stem rust disease

From all three growing seasons 2016, 2017, and 2018 noticed that there were no stem rust infections recorded in Yunnan province Table 6.

DISCUSSION

Wheat rust rated the most severe disease that effect on yield production and grain quality worldwide (Wellings, 2011). Using resistant wheat lines or resistance genes will protect wheat production from disease infection and consequently yield losses. In this study, 47 wheat genotypes evaluated to rust diseases, stripe, leaf, and stem rust. The tested genotypes cultivated in different hotspot of wheat rust in two countries Egypt and China during 2015/2016, 2016/2017, and 2017/2018 wheat growing seasons. Resistance to wheat rust is one of the main objectives for breeding program both in Egypt and China. The results indicated that nine resistant genes showed high resistant to stripe rust in both countries during all growing seasons, i.e. Yr5, Yr15, Yr17, YrTr1, Yr(7,25), Lr9, Lr16, Sr6, however, 38 wheat genotypes varied in their response to stripe rust. In Yunnan 2016, no virulences were found for Yr5, Yr10, Yr15, while the virulence frequencies to Yr24, Yr8 ranged from 0.74% to 11.76% by greenhouse virulence identification (Li et al., 2016). It seemed some genes such as Yr8, Yr10, Yr32, Yr24 became susceptible to some extent either in the field or in greenhouse monitoring (Li et al., 2018), which needs to be paid more attention in wheat production. Resistance genes such as Yr5 and Yr15 are previously known to show a high level of resistance to stripe rust in China, Iran, Turkey, North America, and Africa (Zeybeck and Fahri, 2004; Chen, 2005; Afshari, 2008). The obtained results indicated the excellent performance of Yr5, Yr15, since it couldn't be attacked all over the growing seasons (100%) efficacy to stripe rust, thus it can be used more widely in both of China and Egypt.

During the three successive seasons, eight genotypes, YrTr1, T.sp/Yr5, Yr(7,25), Yr(2,6), Yr(2,+), Lr19, Sr5, Sr24 showed the high level resistance to leaf rust which correspondingly with low severity (0) in both countries. Recent research indicated that all 30 tested winter cultivars from China didn't carry Lr19 gene (Yan *et al.*, 2017). Therefore, it is necessary to introduce these genes into Chinese wheat cultivars considering its

excellent resistance performance to a leaf or stripe rust in the field. In Egypt, El-Orabey et al. (2015) found wheat resistance genes Lr1, Lr2c, Lr3, Lr16, Lr24, Lr26 were susceptible to leaf rust, while, Lr2a and Lr9 showed different reactions. Also, Negm et al. (2013) found that Lr3, Lr16, Lr24, and Lr26 were ineffective against leaf rust during 2009/2010 and 2010/2011 growing seasons, while, Lr1, Lr2a, Lr2c and Lr9 showed different infection types. Draz et al., (2015) found that 13 Lr genes (Lr9, Lr10, Lr11, Lr16, Lr18, Lr19, Lr26, Lr27, Lr29, Lr30, Lr34, Lr42, and Lr46) exhibited seedling resistance to leaf rust disease while, nine Lr genes (Lr19, Lr20, Lr21, Lr24, Lr29, Lr30, Lr32, Lr34 and Lr44) showed adult plant resistance during 2010/2011 and 2011/2012 growing seasons. Moreover, Niazmand et al. (2010) found that no virulence detected on Lr9, Lr19, Lr25 and Lr28 resistance genes to leaf rust in Iran during 2007/2008 growing supplemented season. Our research additional information regarding leaf resistance genes, also confirmed that Lr19 still effective in both Egypt and China at present.

In Egypt, during all growing seasons, the high resistant genotypes to stem rust were, Yr1, Yr5, Yr8, Yr10, Yr15, Yr27, YrSP, YrTr1, Yr(4, H46, 3b, 4b, +), Yr(7, 25), Yr(2, 6), Yr(3,+), Yr(8,19), CaV/Yr32, YrSpP, Yr(2,+), Yr(2,29) Yr (3,V23,+), Yr25, Yr18, AvocetS, Lr9, Lr16, Lr26, Sr24, Sr36, Sr38, these genotypes can be used as a potential source for breeding program in Egypt, while the other tested wheat genotypes were varied in their response to stem rust and showed different ITs (MR, MS, and S) with different disease severity. While in China, all tested genotypes including highly susceptible cultivar Little Club, showed immune to stem rust, this means either the climate was not suitable or the stem pathogen source was not enough for stem rust occurrence in recent years. Thus, we can not draw a conclusion if these genotypes were effective or not by the results of this study. McIntosh et al. (2017) reported 82 Sr genes by now. Jin et al. (2008) found that resistance genes Sr5, Sr6, Sr7b, Sr8a, Sr8b, Sr9b, Sr9e, Sr9g, Sr11, Sr15, Sr17, Sr30, Sr31, Sr38 ineffective to stem rust race (Ug99). Mirza et al. (2010) reported that the virulence to resistance genes Sr13, SrTmp, Sr1A.1R, in Africa, the Middle East, and Asia decreases the focus in the usage of these lines in breeding programs. Wheat line Sr25 was given a high level resistance only when the adult plant Sr2 also exist, e.g., in recently released Ug99-resistant cultivars Misr 1 in Egypt and Muquawin 09 in Afghanistan (Jain et al. 2009). The economic importance of finding and searching for resistance genes to stem rust from old and new cultivars of wheat as a valuable tool has indicated by the Global Rust Initiative (2005).

CONCLUSIONS

Using resistant varieties or resistance genes is the most economical, effective practice, environmentally safe, and

20S

20S

30MS

TRMS

40S

10R

40S

10MS

40s

2.4

Yr(2, +)

Yr25

Yr18

Lr9

Lr16

Lr19

Lr24

Lr26

Sr5

Sr6

Sr9e

Sr11

Sr21

Sr24

Sr26

Sr30

Sr31

Sr36

Sr38

Avocet S

Little Club

Yr(2, 29)

Yr (3, V23,+)

Stem Rust Resistance gene No. /genotype Egypt China China Egypt China Egypt RS ACI RS ACI RS ACI RS ACI RS ACI RS ACI Yr1 AvS/Yr5 Yr6 TRMR 1.2 Yr7 5MR Yr8 Yr9 TRMS 2.4 5MS Yr10 Yr15 5MR Yr17 Yr27 Ω Yr28 TRMR 1.2 Yr31 TRMR 1.2 AvS/Yr32 TRMR 1.2 YrA 5MR **YrSP** YrTr1 T.sp/Yr5 Yr(4,H46,3b,4b,+) Yr(7, 25) Yr(2,6) Yr(3,+)Yr(8,19) CaV/Yr32 **YrSpP**

5S

10S

TRMS

TRMS

TRR

30MS

20S

2.4

2.4

0.6

TRMS

TRMS

10S

20S

10S

10MS

10S

10R

10S

50S

2.4

2.4

Table 6. An average coefficient of infection (ACI) and rust severity (RS) of the evaluated wheat lines to stem rust under natural conditions of Egypt and China during 2016, 2017, and 2018 growing seasons.

Note: 0-50= values of rust severity; R-resistant; MR-moderately resistant; MS - moderately susceptible; S - susceptible; TR- Trace = 3.

sustainable disease management strategy, especially for developing countries. Results showed that nine and eight wheat genotypes gave the highest values of disease resistance to stripe rust and leaf rust in Egypt and China, respectively. While 28 genotypes showed highly resistant to stem rust in Egypt, this will provide valuable information for using these resistance genes in wheat breeding program for releasing new resistant cultivars to rust diseases under agroclimatic conditions of Egypt and Yunnan, China.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the National Natural Science Foundation of China (31560490) and National Key R&D Program of China (2018YFD0200500) for the financial support and to Talented Young Scientist Program (Egypt -18-001) supported by Ministry of Science and Technology of China and also thankful to the authority of Plant Pathology Research Institute, Agriculture Research Centre, Giza, Egypt.

REFERENCES

- Afshari F (2008). Prevalent pathotypes of *Puccinia striiformis* f. sp. *tritici.* Iran J. Agric. Sci. Technol. 10:67-78.
- Afzal SN, Haque MI, Ahmedani MS, Bashir S, Rattu AR (2007). Assessment of yield losses caused by *Puccinia striiformis* triggering stripe rust in the most common wheat varieties. Pak. J. Bot. 39:2127-2134.
- Ali S, Gladieux P, Leconte M, Gautier A, Justesen AF, Hovmøller MS, Enjalbert J, Vallavieille-Pope C (2014). Origin, Migration Routes, and Worldwide Population Genetic Structure of the Wheat Yellow Rust Pathogen *Puccinia striiformis* f.sp. *tritici. PLo S Pathogens* 10 (1):e1003903. doi:10.1371/journal.ppat.1003903.
- Beddow JM, Pardey PG, Chai Y, Hurley TM, Kriticos DJ, Braun HJ, Park RF, Cuddy WS, Yonow T (2015). Research investment implications of shifts in the global geography of wheat stripe rust. Nat. Plants 1:15132. [Google Scholar][PubMed].
- Chen XM (2005). Epidemiology and control of stripe rust [*Puccinia* striiformis f. sp. tritici] on wheat. *Can. J. Plant Pathol.* 27:314-337.
- Draz IS, Abou-Elseoud MS, Kamara AM, Alaa-Eldein OA, El-Bebany AF (2015). Screening of wheat genotypes for leaf rust resistance along with grain yield. Ann. Agri. Sci. 60(1):29-39.
- El-Orabey WM, Sallam ME, Omara RI, Abd El-Malik NI (2015). Geographical distribution of *Puccinia triticina* physiologic races in Egypt during 2012-2014 growing seasons. Afr. J. Agric. Res. 10(45):4193-4203.
- Gebrel EEMA, Gad MA, Kishk AMS (2018). Effect of sowing dates on potential yield and rust resistance of some wheat cultivars. *J. Plant Prod.* Mansoura Univ. 9(4):369-375.
- Global Rust Initiative (2005). A Concept Note: Breeding varieties to resist stem rust race Ug99. (www.globalrust.org).
- Hasan MA, Boult OA, Abou-Zeid M, Gad MA (2016). Impact of different levels of stem and stripe rust severities on two-grain yield components of wheat. *Minufiya* J. Agric. Res. 41(3):621-629.
- Huerta-Espino J, Singh RP, German S, McCallum BD, Park RF, Chen WQ, Bhawaj SC, Goyeau H (2011). Global status of wheat leaf rust caused by *Puccinia triticina. Euphitica* 179:143-160.
- Jain SK, Prashar M, Bhardwaj SC, Singh SB, Sharma YP (2009). Emergence of virulence to *Sr25* of *Puccinia graminis* f. sp. *tritici* on wheat in India. Plant Dis. 93:840.
- Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch TJ (2008). Detection of virulence to resistance gene *Sr* 24 within race TTKS of

Puccinia graminis f. sp. tritici. Plant Dis. 92:923-926.

- Johnston CO, Browder LE (1966). Seventh revision of the international register of physiologic races of *Puccinia recondita f. sp. tritici.* Plant Dis. Rep. 50:756-760.
- Kang Z, Zhao J, Han D, Zhang H, Wang X, Wang C, Guo J, Huang L (2010). Status of wheat rust research and control in China. In Proceedings of the BGRI 2010 Technical Workshop Oral Presentations, St. Petersburg, Russia, 30–31 May 2010. [Google Scholar].
- Kassem M, El-Ahmed A, Hakim MS, El-Khaliefa M, Nachit M (2011). Identification of prevalent races of *Puccinia triticina* Eriks. In Syria and Lebanon. Arab J. Plant Prot. 29(1): 7–13.
- Khan MH, Bukhari A, Dar ZA, Rizvi SM (2013). Status and strategies in breeding for rust resistance in wheat. Agric. Sci. 4:292-301.
- Kokhmetova MAA, Rsaliev S, Rsaliev A, Yessenbekova G, Typina L (2011). Wheat Germplasm Screening for Stem Rust Resistance Using Conventional and Molecular Techniques. Czech. J. Genet. Plant Breed. 47: S146-S154.
- Large EC (1954). Growth stages in cereals. Illustration of the Feekes scale. Plant Pathol. 3:128-129.
- Li MJ Chen XM, Wan AM, Ding ML, Cheng JS (2018). Virulence characterization of stripe rust pathogen *Puccinia striiformis* f. sp. *tritici* population to 18 near-isogenic lines resistant to wheat yellow rust in Yunnan Province. J. Plant Prot. 45(1):75-82 (in Chinese with English abstract).
- Li TY, Cao YY, Wu XX, Xu XF, Wang WL (2016). Seedling Resistance to Stem Rust and Molecular Marker Analysis of Resistance Genes in Wheat Cultivars of Yunnan, China. *PLoS One.* Oct 28, 11(10):e0165640. doi:10.1371/ journal. Pone. 0165640. eCollection.
- Li ZF, Lan CX, He ZH, Singh RP, Rosewarne GM, Chen XM, Xia XC (2014). Overview and application QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci. 54:1907-1925.
- McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC (2017). Catalogue of gene symbols for wheat. Available at https: // www w.w heat .pw .us da. Gov/G G 2/ pubs. Html (accessed February 2018).
- Mirza Jİ, Rattu A, Khanzada KA, Ahmad I, Fetch T (2010). Race analysis of stem rust isolates collected from Pakistan in 2008–09. In *Proceedings of BGRI 2010 Technical Workshop*, ed. R McIntosh, Z Pretorius, St Petersburg, Russia, May 30–31, 2010; p. 5.
- Niazmand AR, Afshari F, Abbasi M, Rezaee S (2010). Study on pathotypes diversity and virulence factors of *Puccinia triticina* Eriksson, the causal agent of wheat brown rust in Iran. Iran. J. Plant Path. 46(3):53-55.
- Negm SS, Boulot OA, Hermas GA (2013). Virulence dynamics and diversity in wheat leaf rust (*Puccinia triticina*) populations in Egypt during 2009/2010 and 2010/2011 growing seasons. Egypt. J. Appl. Sci. 28:183-212.
- Pathan AK, Park RF (2006). Evaluation of seedling and adult plant resistance to leaf rust in European wheat cultivars. Euphytica 149: 327-342.
- Peterson RF, Campbell AB, Hannah AE (1948). A diagrammatic scale for rust intensity on leaves and stems of cereals. Can. J. Res. 26:496-500.
- Saari EE, Wilcoxson RD (1974). Plant disease situation of high yielding durum wheat in Asia and Africa. Annu. Rev. Phytopathol. 2:49-68.
- Shewry PR, Hey SJ (2015). Review: The contribution of wheat to the human diet and health. Food and Energy Security. 4 (3):178-202. doi:10.1002/fes3.64.PMC 4998136. PMID 27610232.
- Shi Y, Huang W, González-Moreno P, Luke B, Dong Y, Zheng Q, Ma H, Liu L (2018). Wavelet-Based Rust Spectral Feature Set (WRSFs): A Novel Spectral Feature Set Based on Continuous Wavelet Transformation for Tracking Progressive Host-Pathogen Interaction of Yellow Rust on Wheat. *Remote Sens.* 10: 525. [Google Scholar] [CrossRef].
- USDA (2019). World Agricultural Production. Circular Series WAP 8-19 August 2019 United States Department of Agriculture, Washington DC, USA. http://www.nass.usda.gov/Publications/.
- Wellings CR (2011). Global status of stripe rust: a review of historical and current threats. *Euphy*. 179:129-141.
- Yan XC, Li ZF, Yang HL, Zhang HH, Gebrewahid TW, Yao ZJ, Liu DQ, Zhou Y (2017). Analysis of Wheat Leaf Rust Resistance genes

in 30 Important Wheat Cultivars. *Scientia* Agricultura Sinica, 50(2):272-285 (in Chinese with English abstract).

- Zeybeck A, Fahri Y (2004). Determination of virulence genes frequencies in wheat stripe rust (*Puccinia striiformis* f. sp. *tritici*) populations during natural epidemics in the regions of Southern Aegean and Western Mediterranean in Turkey. *Pak. J. Biol. Sci.* 11: 1967-1971.
- Zhou HX, Xia XC, He ZH, Li X, Wang CF, Li ZF, Liu DQ (2013). Molecular mapping of leaf rust gene *LrNJ97* in Chinese wheat line Neijiang 977671. Theor. Appl. Genet. 126:2141-2147.

http://www.sciencewebpublishing.net/jacr