Article abstract

Journal of Agricultural and Crop Research

Research Article | Published November 2019 | Volume 7, Issue 11 pp. 204-214.

doi: https://doi.org/10.33495/jacr_v7i11.19.155

 

Improvement of restorer lines for strengthening pearl millet (Pennisetum glaucum L.) hybrid breeding in West and Central Africa

 



 

 

Hassane Zakari1, 2

Riyazaddin Mohammed2

Prakash Irappa Gangashetty2*

Mahalingam Govindaraj3

Moussa Tangara4

 

Email Author


 

1. Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, B.P. E2528, Mali.

2. International Crops Research Institute for the Semi-Arid Tropics, Niamey, BP 12404, Niger (Via Paris).

3. International Crops Research Institute for the Semi-Arid Tropics, Patancheru-502324, Medak, Telangana, India.

4. Institut Polytechnique Rural de Formation et de Recherche Appliquée (IPR/IFRA), Mali. 



……....…...………..........................…………....………............…............……...........……........................................................………...……..…....……....…

Citation: Zakari H, Mohammed R, Gangashetty PI, Govindaraj M, Tangara M (2019). Improvement of restorer lines for strengthening pearl millet (Pennisetum glaucum L.) hybrid breeding in West and Central Africa. J. Agric. Crop Res. 7(11): 204-214.

……....…...………..........................…………....………............…............……...........……........................................................………...……..…....……....…



 Abstract 


Little information was available on the genetics of pearl millet restorers available in West and Central Africa. Hence, diallel analysis was carried out using six parents and 30 F1’s, to identify the nature of gene action, and improve the restorer gene pool. The genotype ICMR 157004 is early flowering with high biomass yield. The cross ICMX 1770192 (2.19 t/ha) ICMX 1770197 (2.14 t/ha) and ICMX 1770193 (2.08 t/ha) exhibited high grain yield with early days to 50% flowering and medium plant height. Grain Fe content is positively associated with grain Zn content (r = 0.93**) but exhibited negative association with other agronomic traits indicating proper care should be taken for breeding these traits. Mean sum of squares for panicle circumference, grain yield and biomass yield exhibited significant probabilities for the maternal effects indicating the influence of maternal factors in inheritance of these traits. The estimates of narrow sense heritability for days to 50% flowering, panicle length, plant height, panicle circumference, biomass yield and grain Fe and Zn content was high indicating the predominance of additive gene action in inheritance of these traits. ICMX 1770193, ICMX 1770194, ICMX 1770197, ICMX 1770204 and ICMX 1770208 exhibited significant negative sca effects for days to 50% flowering. Positive and significant sca effects for grain Fe and Zn contents were expressed by crosses ICMX 1770197, and ICMX 1770204. Identified genotypes with good GCA and crosses with good SCA, were useful in improving the restorer lines of pearl millet to promote the hybrid pearl millet breeding in West and Central Africa.

Keywords  Pearl millet   restorers   diallel mating design   general and specific combining abilities (GCA & SCA)   heritability  

 

 

Copyright © 2019 Author(s) retain the copyright of this article.

This article is published under the terms of the Creative Commons Attribution License 4.0

 

 

 References 

 

Allard RW (1960). Principles of Plant Breeding. J. Wiley and Sons, London. pp. 83-88.

Andrews DJ, Rajewski JF, Kumar KA (1993). Pearl millet: New feed grain crop. In: J. Janick and J.E. Simon, editors, New Crops. John Wiley & Sons, New York. p. 198-208.

Azad AK, Hamid A, Rafii MY, Malek MA (2014). Combining ability of pod yield and related traits of groundnut (Arachis hypogaea L,) under salinity stress. The Sci. World J. 2014:1-7.

Bhasker K, Shashibhushan D, Krishna MK and Bhave MHV. (2017). Genetic Variability, Heritability and Genetic Advance of Grain Yield in Pearl Millet [Pennisetum glaucum (L.) R. Br.]. Int. J. Pure App. Biosci. 5(4):1228-1231.

Bidinger FR, Hash TC (2004). Pearl Millet in Physiology and Biotechnology Integration for Plant Breeding. Edited by Henry T. Nguyen and Abraham Blum. Marcedle kkeirnc. New York Basel.

Chotaliya JM, Dangaria CJ, Dhedhi KK (2009). Exploitation of heterosis and selection of superior inbreds in pearl millet. Int. J. Agric. Sci. Rev. 5(2):531-535.

FAOSTAT (2017). FAOSTAT Database. http://www.fao.org/faostat/en/#data/QC. Accessed 29 July 2017.

Food and Agriculture Organization of the United Nations (FAO) (2013). Available at: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed 16 June 2013.

Fonseca S, Patterson FL. (1968). Hybrid vigour in seven parent diallel crosses in common winter wheat. Crop Science. Rev. 8: 85-88.

Francisco R, Alvarado, Gregorio, Pacheco, Ángela, Crossa, José, Burgueño and Juan. (2015). "AGD-R (Analysis of Genetic Designs with R for Windows) Version 5.0", hdl:11529/10202, CIMMYT Research Data & Software Repository Network, V13. http://www.gnu.org/licenses/gpl-3.0.html.

GenStat (2015). Genstat for Windows 18th Edition. VSN International, Hemel Hempstead, UK. Web page: Genstat.co.uk.

Govindaraj M, Rai KN, Pfeiffer WH, Kanatti A, Shivade, H (2016). Energy-dispersive X ray fluorescence spectrometry for cost-effective and rapid screening of pearl millet germplasm and breeding lines for grain iron and zinc density. Communications in Soil Science and Plant Analysis. Rev. 47(18):2126-2134.

Govindaraj M, Rai KN, Shanmugasundaram P, Dwivedi SL, Sahrawat KL, Muthaiah AR, Rao AS (2013). Combining Ability and Heterosis for Grain Iron and Zinc Densities in Pearl Millet. Crop Sci. Rev. 53:507-517.

Govindaraj M, Selvi B, Rajarathinam S, Sumathi P (2011). Genetic variability and heritability of grain yield components and grain mineral concentration in India’s pearl millet (Pennisetum glaucum (L) R. Br.) accessions. Afr. J. Food, Agric. Nutr. Dev. Rev. 11(3):4758-4771.

Govindaraj M, Selvi B, Rajarathinam S (2009). Correlation studies for grain yield components and nutritional quality in pearl millet (Pennisetum glaucum (L.) R. BR.) germplasm. World J. Agric. Rev. 5:686-689.

Gowda CLL, Rai KN, Reddy Belum VS, Saxena KB. (eds.) (2006). Hybrid parents research at ICRISAT. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 212 pp. ISBN 92-9066-489-4; Order code BOE 039.

Griffing B (1956). Concept of general and specific combining ability in relation to diallel crossing system. Austr. J. Biol Sci. Rev. 9:463-93.

Gulia SK, Wilson JP, Carter J, Singh BP (2007). Progress in Grain Pearl Millet Research and Market Development. Issues in new crops and new uses. J. Janick and A. Whipkey (eds.). ASHS Press, Alexandria, VA.

Haussmann BIG, Rattunde HF, Weltzien-Rattunde E, Traoré PSC, Yom BK, Parzies HK (2012). Breeding strategies for adaptation of pearl millet and sorghum to climate variability and change in West Africa. J. Agron. Crop Sci. Rev. 198:327-339.

Johnson HW, Robinson HF and Comstock LE. (1955). Genotypic and Phenotypic correlation in soybean and their implications in selection. Agron. J. Rev. 47:177-483.

Kanatti A, Rai KN, Radhika K, Govindaraj M, Sahrawat KL, Rao AS (2014). Grain iron and zinc density in pearl millet: combining ability, heterosis and association with grain yield and grain size. SpringerPlus. Rev. 3:763.

Kumar IS, Srinivasa R, Belum P Reddy VS, Ravindrababu V, Reddy KHP (2016). Heterosis and Inbreeding Depression in Tropical Sweet Sorghum (Sorghum bicolor (L.) Moench). Crop Res. 51:1.

Mather K, Jinks JL (1971). Biometrical Genetics. The study of continuous Variation. Chapman and Hall, London 1971. XII, 382 S., £ 8.00. Biometrische Zeitschrift. Rev. 15(5):364-365.

Muthamilarasan M, Dhaka A, Yadav R, Prasad M (2016). Exploration of millet models for developing nutrient rich graminaceous crops. Plant Sci. Rev. 242:89-97.

Nandaniya KU, Mungra KD, Sorathiya JS. (2016). Estimation of heterosis in pearl millet [Pennisetum glaucum (L.)] for yield and quality traits. Electron. J. Plant Breed. Rev. 7(3):758-760.

Pucher A, Ousmane S, Ignatius IA, Jada G, Roger Z, Mahamadi O, Moussa DS, Boureima S, Hash CT, Haussmann BIG (2018). Pearl millet breeding in West Africa –Steps towards higher productivity and nutritional value. Thesis was accepted as a doctoral dissertation in fulfillment of the requirements for the degree “Doktor der Agrarwissenschaften” (Dr. sc. Agr. / Ph. D. in Agricultural Sciences) by the Faculty of Agricultural Sciences at the University of Hohenheim.

Pucher A, Ousmane S, Ignatius IA, Jada G, Roger Z, Mahamadi O, Moussa DS, Boureima S, Hash CT, Haussmann BIG (2015). Agro-morphological Characterization of West and Central African Pearl Millet Accessions. Crop Sci. Rev. 55:737-748.

Pucher A, Henning H, Jadah G, Hash CT, Haussmann BIG (2014). Micronutrient Density and Stability in West African Pearl Millet - Potential for Biofortification. Crop Sci. Rev. 54:1709-1720.

Ramalho MAP, Santos J, Zimmermann MJO (1993). Genética quantitativa em plantas autógamas: Aplicação ao melhoramento do feijoeiro Goiânia: Editora UFG. p. 271.

Raut DM, Tamnar AB, Burungale SV and Badhe PL. (2017). Half diallel analysis in cowpea [Vigna unguiculate (L.) Walp.]. Int. J. Curr. Microbiol. Appl. Sci. Rev. 6(7):1807-1819.

Reddy BVS, Ramesh S, Longvah T (2004). Prospects of breeding for micronutrients and b-carotene-dense sorghums. International Sorghum and Millets Newsletter. Rev. 46:10-14.

Satyavathi CT, Sakkira B, Singh BB, Unnikrishnan KV, Bharadwaj C (2009). Analysis of diversity among cytoplasmic male sterile sources and their utilization in developing F1 hybrids in Pearl millet [Pennisetum glaucum (R.) Br]. Indian J. Genet. Rev. 69(4):352-360.

Silva MP, Amaral JAT, Rodrigues R, Daher RF, Leal NR, Schuelter AR (2004). Análise dialélica da capacidade combinatória em feijão- de-vagem. Horticultura Brasileira. Rev. 22:277-280.

Singh J, Sharma R (2014). Assessment of Combining Ability in Pearl Millet Using Line x Tester Analysis. Adv. Crop Sci. Tech. Rev. 2: 147.

Varshney RK, Chengcheng S, Mahendar T, Cedric M, Jason W (2017). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnol. p. 35.

Vetriventhan MA, Nirmalakumari A, Ganapathy S (2008). Heterosis for Grain Yield Components in Pearl Millet (Pennisetum glaucum (L.) R. Br.). World J. Agric. Sci. Rev. 4 (5):657-660.

Yadav OP, Rai KN (2013). Genetic Improvement of Pearl Millet in India. REV. 2(4):275-292.

Yadav OP, Rai KN, Rajpurohit BS, Hash CT, Mahala RS, Gupta SK, Shetty HS, Bishnoi HR, Rathore MS, Kumar A, Sehgal S, Raghvani KL (2012). Twenty-five years of pearl millet improvement in India. All India Coordinated Pearl Millet Improvement Project, Jodhpur, India. p. 122.

Yadav OP (2007). Genetic diversification of landrace-based populations of pearl millet (Pennisetum glaucum L. R. Br.) to enhance productivity and adaptation to arid zone environments. Indian J. Genet. Rev. 67(4):358-364.