Article abstract

Journal of Agricultural and Crop Research

Research Article | Published July 2020 | Volume 8, Issue 7 pp. 140-146.

doi: https://doi.org/10.33495/jacr_v8i7.20.116

 

Effect of heat stress on soil fertility and sowing date on yield components of sorghum in the Sudanian agro-ecological zone of Burkina Faso

 



 

 

Pane Jeanne d’Arc Coulibaly1*

Daniel Okae-Anti2

Badiori Ouattara1

Jacques Sawadogo1

Michel Papaoba Sedogo1

 

Email Author


Tel: +22671530607, +22677729799

 

1.Tentre National de la Recherche Scientifique et Technologique, Institute de l’Environment et de Recherches Agricoles (CNRST/INERA), Ouagadougou, Burkina Faso.

2. University of Cape Coast, Ghana.



……....…...………..........................…………....………............…............……...........……........................................................………...……..…....……....…

Citation: d’Arc Coulibaly PJ, Okae-Anti D, Ouattara B, Sawadogo J, Sedogo MP (2020). Effect of heat stress on soil fertility and sowing date on yield components of sorghum in the Sudanian agro-ecological zone of Burkina Faso. J. Agric. Crop Res. 8(7):140-146.

……....…...………..........................…………....………............…............……...........……........................................................………...……..…....……....…



 Abstract 


Productivity of Sorghum has declined in recent years because of climate change. This study aimed to identify the impact of heat stress on soil fertility and sorghum yields and yield components. We conducted this study in Burkina Faso in 2014 under three sowing dates: 17 March (higher temperature: 41.1/23.9°C), 05 July (optimum temperature: 38.1/19.7°C) and 20 October (lower temperature: 31.08/21.8 °C). The study used a randomized split-plot design with four replications under irrigation, N fertilization and two sorghum varieties. The results revealed that cropping sorghum in March led to 46.36 and 68.26% of grain yield reduction compared to grain yields from July and October respectively. Grain yield obtained in March is negligible compared with the potential yields of Kapelga (2500 kg ha-1) and Sariaso 14 (5000 kg ha-1). In this experiment, heat stress decreased grain yield with a higher degree than biomass as a result of which harvest index decreased up to 81.82 and 90.71% compared with the experiments conducted in July and October respectively. This temperature of 41.1/23.9°C significantly decreased content of major nutrients in the soil. Therefore, cropping sorghum in hot dryer condition would not be possible for achieving food security. Growing Sorghum within October might be a solution.

Keywords  Burkina Faso   climate change   heat stress   sorghum yields   soil fertility  

 

 

Copyright © 2020 Author(s) retain the copyright of this article.

This article is published under the terms of the Creative Commons Attribution License 4.0

 

 

 
References 

 

Abrams L (2018). Unlocking the potential of enhanced rainfed agriculture. Report no. 39. SIWI, Stockholm. pp. 1-24.

Adhikari U, Nejadhashemi AP, Woznicki SA (2015). Climate change and eastern Africa: a review of impact on major crops. Food and Energy Secur. 4:110-132.

Alemaw BF, Simalenga T (2015). Climate Change Impacts and Adaptation in Rainfed Farming Systems: A Modelling Framework for Scaling-Out Climate Smart Agriculture in Sub-Saharan Africa. Am. J. Climate Change. 4:313-329.

Ayanlade A, Radeny M, Morton JF, Muchaba T (2018). Rainfall variability and drought characteristics in two agro-climatic zones: An assessment of climate change challenges in Africa. Science of the Total Environment 630: 728-737. doi: 10.1016/j.scitotenv.2018.02.196.

Blum A (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res.112:119-123. doi: 10.1016/j.fcr.2009.03.009.

Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) (2019). Sorghum. Explore it at CIRAD. https://www.cirad.fr/en/our-research/tropical-value-chains/sorghum/context-and-issues.

Coulibaly PJA, Ouattara B, Gaiser T, Worou N, Tondoh JE, Okae-Anti D, Sedogo MP (2018). Cropping two sorghum varieties under irrigation, an intensification strategy to mitigate climate change induced effect in Burkina Faso, West Africa. IJAER, 04:593-609.

Kotir JH (2011). Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environment Development and Sustainability 13:587-605. doi: 10.1007/s10668-010-9278-0

FAO (2006). World Reference Base for Soil Resources - a framework for international classification, correlation and communication. World Soil Resources Report, 103.

Fixen P, Brentrup F, Bruulsema WT, Garcia F, Norton R, Zingore S (2015). Nutrient fertilizer use efficiency: Measurement, current situation and trends. International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI), and International Potash Institute (IPI): pp. 8-38.

Hatfield JL, Prueger JH (2015). Temperature extremes: effect on plant growth and development. Weath Clim. Extr. 10:4-10.

Lobell DB, Gourdji SM (2012). The influence of climate change on global crop productivity. Plant Physiol. 160:1686-1697. doi: 10.1104/pp.112.208298.

Ministère de l'agriculture et de la sécurité alimentaire (MASA) (2013). Situation de référence des principales filières agricoles au Burkina Faso, note d’information.

Obalum SE, Amalu UC, Obi ME, Wakatsuki T (2011). Soil water balance and grain yield of sorghum under no‐till versus conventional tillage with surface mulch in the derived Savanna Zone of South-eastern Nigeria. Exp. Agric. 47:89-109.

Prasad PVV, Pisipati, SR, Mutava RN, Tuinstra MR (2008). Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci. 48:1911-1917. doi: 10.2135/cropsci2008.01.0036.

Prasad PVV, Bheemanahalli R, Jagdish SK (2017). Field crops and the fear of heat stress-opportunities, challenges and future directions. Field Crops Res. 200:114-121. doi: 10.1016/j.fcr.2016.09.024.

Reynolds TW, Waddington SR, Anderson C, Chew L, True Z, Cullen AA (2015). Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. Food Sci., 7:795-822. doi: 10.1007/s12571-015-0478-1.

Sehgal A, Sita K, Kumar J, Kumar S, Singh S, Siddique KHM, Nayyar H (2017). Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front. Plant Sci. 8:1776. doi: 10.3389/fpls.2017.01776.

Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshne RK, HanumanthaRao B, Nair RM, Prasad PVV, Nayyar H (2018). Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front Plant Sci. 9:1705. doi:10.3389/fpls.2018.01705.

Siebert S, Ewert F, Rezaei EE, Kage H, Gra R (2014). Impact of heat stress on crop yield - On the importance of considering canopy temperature. Environ. Res. Lett. 9: 1-13.

Singh V, Nguyen CT, van Oosterom EJ, Chapman SC, Jordan DR, Hammer G (2015). Sorghum genotypes differ in high temperature responses for seed set. Field Crops Res. 171:32-40. doi: 10.1016/j.fcr.2014.11.003.

Song Y, Tian Ci D, Zhang DQM (2015). Stable methylation of a non-coding RNA gene regulates gene expression in response to abiotic stress in Populus simonii. J. Exp. Bot. 67:1477-1492. doi:10.1093/jxb/erv543.

Tack J, Lingenfelser J, Jagadish SVK (2017). Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs. PNAS, 114:9296-9301. doi: 10.1073/pnas.1706383114.

Zougmoré RB, Partey ST, Ouédraogo M, Torquebiau E, Campbell BM (2018). Facing climate variability in sub-Saharan Africa: analysis of climate-smart agriculture opportunities to manage climate-related risks. Cah. Agric. 27(34001):9. doi: 10.1051/cagri/2018019.